login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A271932
G.f. A(x) satisfies: A(x) = A( x^7 + 7*x*A(x)^7 )^(1/7), with A(0)=0, A'(0)=1.
4
1, 1, 4, 20, 110, 638, 3828, 23515, 146970, 930820, 5957325, 38452405, 249944939, 1634287025, 10739831400, 70884562683, 469622328252, 3121694320866, 20811920304961, 139115729296575, 932107335003790, 6258662787526655, 42105353650697301, 283765005631661148, 1915495724241980280, 12949332513585521217, 87661142189041380207, 594176943178375193748, 4032121696383579351905, 27392082325012470506385, 186276500908841717917320
OFFSET
1,3
COMMENTS
Compare the g.f. to the following identities:
(1) C(x) = C( x^2 + 2*x*C(x)^2 )^(1/2),
(2) C(x) = C( x^3 + 3*x*C(x)^3 )^(1/3),
where C(x) = x + C(x)^2 is a g.f. of the Catalan numbers (A000108).
More generally, for prime p there exists an integer series G(x) that satisfies: G(x) = G( x^p + p*x*G(x)^p )^(1/p) with G(0)=0, G'(0)=1 (conjecture).
LINKS
EXAMPLE
G.f.: A(x) = x + x^2 + 4*x^3 + 20*x^4 + 110*x^5 + 638*x^6 + 3828*x^7 + 23515*x^8 + 146970*x^9 + 930820*x^10 + 5957325*x^11 + 38452405*x^12 +...
where A(x)^7 = A( x^7 + 7*x*A(x)^7 ).
RELATED SERIES.
A(x)^7 = x^7 + 7*x^8 + 49*x^9 + 343*x^10 + 2401*x^11 + 16807*x^12 + 117649*x^13 + 823544*x^14 + 5764822*x^15 + 40353901*x^16 + 282478679*x^17 + 1977362758*x^18 + 13841640148*x^19 + 96892304579*x^20 + 678252720401*x^21 +...
PROG
(PARI) {a(n) = my(A=x+x^2, X=x+x*O(x^n)); for(i=1, n, A = subst(A, x, x^7 + 7*X*A^7)^(1/7) ); polcoeff(A, n)}
for(n=1, 40, print1(a(n), ", "))
CROSSREFS
Sequence in context: A026127 A222205 A262394 * A153295 A006770 A158827
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Apr 16 2016
STATUS
approved