login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A271934
G.f. A(x) satisfies: A(x) = A( x^3 + 6*x*A(x)^3 )^(1/3), with A(0)=0, A'(0)=1.
4
1, 2, 8, 38, 196, 1064, 5988, 34632, 204672, 1231082, 7514052, 46433088, 289976404, 1827459072, 11608240000, 74249294704, 477826080368, 3091718252320, 20101537759256, 131262924427560, 860504352317040, 5661120688863216, 37363827222888640, 247331149667685440, 1641642515512685408, 10923380539408947456, 72850297774044995328, 486886413558080754198, 3260469757311730139044, 21874082006618739609864
OFFSET
1,2
COMMENTS
Compare the g.f. to the following identity:
C(x) = C( x^3 + 3*x*C(x)^3 )^(1/3),
where C(x) = x + C(x)^2 is a g.f. of the Catalan numbers (A000108).
FORMULA
G.f. A(x) satisfies: A( B(x) - 2*x^3/B(x) ) = x, where B(x) is described in the examples.
EXAMPLE
G.f.: A(x) = x + 2*x^2 + 8*x^3 + 38*x^4 + 196*x^5 + 1064*x^6 + 5988*x^7 + 34632*x^8 + 204672*x^9 + 1231082*x^10 + 7514052*x^11 + 46433088*x^12 +...
where A(x)^3 = A( x^3 + 6*x*A(x)^3 ).
RELATED SERIES.
A(x)^3 = x^3 + 6*x^4 + 36*x^5 + 218*x^6 + 1332*x^7 + 8208*x^8 + 50984*x^9 + 319056*x^10 + 2010528*x^11 + 12750950*x^12 + 81348948*x^13 + 521839944*x^14 + 3364421812*x^15 + 21791976192*x^16 +...
Series reversion of A(x) equals B(x) - 2*x^3/B(x) where
B(x) = x + 2*x^4 - 20*x^7 + 302*x^10 - 5436*x^13 + 108072*x^16 - 2286160*x^19 + 50475256*x^22 - 1149822240*x^25 + 26825146770*x^28 - 637700980612*x^31 + 15391872726072*x^34 - 376193675011356*x^37 + 9291840570002312*x^40 +...
PROG
(PARI) {a(n) = my(A=x+x^2, X=x+x*O(x^n)); for(i=1, n, A = subst(A, x, x^3 + 6*X*A^3)^(1/3) ); polcoeff(A, n)}
for(n=1, 30, print1(a(n), ", "))
CROSSREFS
Cf. A271931.
Sequence in context: A026939 A291088 A047098 * A364723 A372107 A266797
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Apr 16 2016
STATUS
approved