Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #9 Apr 17 2016 08:46:29
%S 1,2,8,38,196,1064,5988,34632,204672,1231082,7514052,46433088,
%T 289976404,1827459072,11608240000,74249294704,477826080368,
%U 3091718252320,20101537759256,131262924427560,860504352317040,5661120688863216,37363827222888640,247331149667685440,1641642515512685408,10923380539408947456,72850297774044995328,486886413558080754198,3260469757311730139044,21874082006618739609864
%N G.f. A(x) satisfies: A(x) = A( x^3 + 6*x*A(x)^3 )^(1/3), with A(0)=0, A'(0)=1.
%C Compare the g.f. to the following identity:
%C C(x) = C( x^3 + 3*x*C(x)^3 )^(1/3),
%C where C(x) = x + C(x)^2 is a g.f. of the Catalan numbers (A000108).
%F G.f. A(x) satisfies: A( B(x) - 2*x^3/B(x) ) = x, where B(x) is described in the examples.
%e G.f.: A(x) = x + 2*x^2 + 8*x^3 + 38*x^4 + 196*x^5 + 1064*x^6 + 5988*x^7 + 34632*x^8 + 204672*x^9 + 1231082*x^10 + 7514052*x^11 + 46433088*x^12 +...
%e where A(x)^3 = A( x^3 + 6*x*A(x)^3 ).
%e RELATED SERIES.
%e A(x)^3 = x^3 + 6*x^4 + 36*x^5 + 218*x^6 + 1332*x^7 + 8208*x^8 + 50984*x^9 + 319056*x^10 + 2010528*x^11 + 12750950*x^12 + 81348948*x^13 + 521839944*x^14 + 3364421812*x^15 + 21791976192*x^16 +...
%e Series reversion of A(x) equals B(x) - 2*x^3/B(x) where
%e B(x) = x + 2*x^4 - 20*x^7 + 302*x^10 - 5436*x^13 + 108072*x^16 - 2286160*x^19 + 50475256*x^22 - 1149822240*x^25 + 26825146770*x^28 - 637700980612*x^31 + 15391872726072*x^34 - 376193675011356*x^37 + 9291840570002312*x^40 +...
%o (PARI) {a(n) = my(A=x+x^2,X=x+x*O(x^n)); for(i=1,n, A = subst(A,x, x^3 + 6*X*A^3)^(1/3) ); polcoeff(A,n)}
%o for(n=1,30,print1(a(n),", "))
%Y Cf. A271931.
%K nonn
%O 1,2
%A _Paul D. Hanna_, Apr 16 2016