login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A266797
a(n) = (6^n + 4^n + 3*2^n)/8.
1
2, 8, 38, 200, 1112, 6368, 37088, 218240, 1292672, 7689728, 45874688, 274196480, 1640978432, 9829081088, 58907353088, 353175633920, 2117979963392, 12703584616448, 76204327436288, 457157244354560, 2742668586647552, 16454912005111808, 98725073977868288
OFFSET
1,1
COMMENTS
Gives the number of ways that the product of the values on n different 6-sided dice can be a perfect square. Thus a(n)/6^n is the probability that the product of n different 6-sided dice is a perfect square.
FORMULA
From Colin Barker, Jan 08 2016: (Start)
a(n) = 2^(n - 3)*(2^n + 3^n + 3).
a(n) = 12*a(n-1) - 44*a(n-2) + 48*a(n-3) for n>3.
G.f.: 2*x*(1 - 3*x)*(1 - 5*x) / ((1 - 2*x)*(1 - 4*x)*(1 - 6*x)).
(End)
EXAMPLE
a(1) = 2 because there are two ways for one die to be a perfect square: if its value is 1 or 4.
a(2) = 8 because there are eight ways for the product of the values on two dice to result in perfect squares: 1*1, 1*4, 2*2, 3*3, 4*1, 4*4, 5*5, 6*6.
MAPLE
seq((6^n+4^n+3*2^n)/8, n = 1 .. 40);
PROG
(PARI) a(n) = 2^(n-3)*(2^n+3^n+3) \\ Colin Barker, Jan 08 2016
(PARI) Vec(2*x*(1-3*x)*(1-5*x)/((1-2*x)*(1-4*x)*(1-6*x)) + O(x^30)) \\ Colin Barker, Jan 08 2016
CROSSREFS
Sequence in context: A271934 A364723 A372107 * A369208 A234939 A365751
KEYWORD
nonn,easy
AUTHOR
Nathaniel Johnston, Jan 03 2016
STATUS
approved