login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A266799
Coefficient of x^0 in the minimal polynomial of the continued fraction [1^n,sqrt(3),1,1,...], where 1^n means n ones.
5
1, 1, 49, 229, 1861, 12001, 84241, 572209, 3935569, 26939221, 184737301, 1265964481, 8677687969, 59476087009, 407659540081, 2794128600901, 19151272325221, 131264694791329, 899701808208049, 6166647394567441, 42266831441062801, 289701168799073461
OFFSET
0,3
COMMENTS
See A265762 for a guide to related sequences.
FORMULA
a(n) = 5*a(n-1) + 15*a(n-2) - 15*a(n-3) - 5*a(n-4) + a(n-5) .
G.f.: (-1 + 4 x - 29 x^2 + 16 x^3 - x^4)/(-1 + 5 x + 15 x^2 - 15 x^3 - 5 x^4 + x^5).
EXAMPLE
Let p(n,x) be the minimal polynomial of the number given by the n-th continued fraction:
[sqrt(3),1,1,1,...] has p(0,x)=1-8x-7x^2+2x^3+x^4, so a(0) = 1;
[1,sqrt(3),1,1,1,...] has p(1,x)=1-12x+23x^2-12x^3+x^4, so a(1) = 1;
[1,1,sqrt(3),1,1,1...] has p(2,x)=49-98x+65x^2-16x^3+x^4, so a(2) = 49.
MATHEMATICA
u[n_] := Table[1, {k, 1, n}]; t[n_] := Join[u[n], {Sqrt[3]}, {{1}}];
f[n_] := FromContinuedFraction[t[n]];
t = Table[MinimalPolynomial[f[n], x], {n, 0, 40}];
Coefficient[t, x, 0] ; (* A266799 *)
Coefficient[t, x, 1]; (* A266800 *)
Coefficient[t, x, 2]; (* A266801 *)
Coefficient[t, x, 3]; (* A266802 *)
Coefficient[t, x, 4]; (* A266799 *)
LinearRecurrence[{5, 15, -15, -5, 1}, {1, 1, 49, 229, 1861}, 30] (* Harvey P. Dale, Oct 21 2019 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Jan 09 2016
STATUS
approved