The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A266801 Coefficient of x^2 in the minimal polynomial of the continued fraction [1^n,sqrt(3),1,1,...], where 1^n means n ones. 5
 -7, 23, 65, 653, 3935, 28373, 190793, 1317335, 9003953, 61779965, 423273503, 2901611813, 19886759705, 136308977303, 934267517345, 6403586065133, 43890776239583, 300832001287925, 2061932830446953, 14132698865151575, 96866956468010513, 663936003630421853 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS See A265762 for a guide to related sequences. LINKS Index entries for linear recurrences with constant coefficients, signature (5,15,-15,-5,1). FORMULA a(n) = 5*a(n-1) + 15*a(n-2) - 15*a(n-3) - 5*a(n-4) + a(n-5) . G.f.:  (7 - 58 x - 55 x^2 + 122 x^3 - 5 x^4)/(-1 + 5 x + 15 x^2 - 15 x^3 - 5 x^4 + x^5). EXAMPLE Let p(n,x) be the minimal polynomial of the number given by the n-th continued fraction: [sqrt(3),1,1,1,...] has p(0,x)=1-8x-7x^2+2x^3+x^4, so a(0) = -7; [1,sqrt(3),1,1,1,...] has p(1,x)=1-12x+23x^2-12x^3+x^4, so a(1) = 23; [1,1,sqrt(3),1,1,1...] has p(2,x)=49-98x+65x^2-16x^3+x^4, so a(2) = 65. MATHEMATICA u[n_] := Table[1, {k, 1, n}]; t[n_] := Join[u[n], {Sqrt[3]}, {{1}}]; f[n_] := FromContinuedFraction[t[n]]; t = Table[MinimalPolynomial[f[n], x], {n, 0, 40}]; Coefficient[t, x, 0] ; (* A266799 *) Coefficient[t, x, 1];  (* A266800 *) Coefficient[t, x, 2];  (* A266801 *) Coefficient[t, x, 3];  (* A266802 *) Coefficient[t, x, 4];  (* A266799 *) CROSSREFS Cf. A265762, A266799, A266800, A266802. Sequence in context: A003261 A306971 A343519 * A066187 A259214 A114246 Adjacent sequences:  A266798 A266799 A266800 * A266802 A266803 A266804 KEYWORD sign,easy AUTHOR Clark Kimberling, Jan 09 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 1 11:38 EST 2021. Contains 349429 sequences. (Running on oeis4.)