The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A266802 Coefficient of x^3 in the minimal polynomial of the continued fraction [1^n,sqrt(3),1,1,...], where 1^n means n ones. 5
 2, -12, -16, -294, -1552, -11868, -78142, -543996, -3706624, -25463142, -174376288, -1195587372, -8193644926, -56162781804, -384938354032, -2638425262758, -18083987259952, -123949619666556, -849562999302334, -5822992294650972, -39911380656754528 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS See A265762 for a guide to related sequences. LINKS Table of n, a(n) for n=0..20. Index entries for linear recurrences with constant coefficients, signature (5,15,-15,-5,1). FORMULA a(n) = 5*a(n-1) + 15*a(n-2) - 15*a(n-3) - 5*a(n-4) + a(n-5) . G.f.: (2 (-1 + 11 x - 7 x^2 + 2 x^3 + 6 x^4))/(-1 + 5 x + 15 x^2 - 15 x^3 - 5 x^4 + x^5). EXAMPLE Let p(n,x) be the minimal polynomial of the number given by the n-th continued fraction: [sqrt(3),1,1,1,...] has p(0,x) = 1 - 8 x - 7 x^2 + 2 x^3 + x^4, so a(0) = 2; [1,sqrt(3),1,1,1,...] has p(1,x) = 1 - 12 x + 23 x^2 - 12 x^3 + x^4, so a(1) = -12; [1,1,sqrt(3),1,1,1...] has p(2,x) = 49 - 98 x + 65 x^2 - 16 x^3 + x^4, so a(2) = -16. MATHEMATICA u[n_] := Table[1, {k, 1, n}]; t[n_] := Join[u[n], {Sqrt[3]}, {{1}}]; f[n_] := FromContinuedFraction[t[n]]; t = Table[MinimalPolynomial[f[n], x], {n, 0, 40}]; Coefficient[t, x, 0] ; (* A266799 *) Coefficient[t, x, 1]; (* A266800 *) Coefficient[t, x, 2]; (* A266801 *) Coefficient[t, x, 3]; (* A266802 *) Coefficient[t, x, 4]; (* A266799 *) CROSSREFS Cf. A265762, A266299, A266800, A266801. Sequence in context: A358783 A134833 A057827 * A082407 A063576 A144264 Adjacent sequences: A266799 A266800 A266801 * A266803 A266804 A266805 KEYWORD sign,easy AUTHOR Clark Kimberling, Jan 09 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 4 17:39 EDT 2024. Contains 374923 sequences. (Running on oeis4.)