This site is supported by donations to The OEIS Foundation.

 Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A265762 Coefficient of x in minimal polynomial of the continued fraction [1^n,2,1,1,1,...], where 1^n means n ones. 43
 -3, -5, -15, -37, -99, -257, -675, -1765, -4623, -12101, -31683, -82945, -217155, -568517, -1488399, -3896677, -10201635, -26708225, -69923043, -183060901, -479259663, -1254718085, -3284894595, -8599965697, -22515002499, -58945041797, -154320122895 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS In the following guide to related sequences, d(n), e(n), f(n) represent the coefficients in the minimal polynomial written as d(n)*x^2 + e(n)*x + f(n), except, in some cases, for initial terms. All of these sequences (eventually) satisfy the linear recurrence relation a(n) = 2*a(n-1) + 2*a(n-2) - a(n-3). continued fractions       d(n)     e(n)     f(n) [1^n,2,1,1,1,...]       A236428  A265762  A236428 [1^n,3,1,1,1,...]       A236428  A265762  A236428 [1^n,4,1,1,1,...]       A265802  A265803  A265802 [1^n,5,1,1,1,...]       A265804  A265805  A265804 [1^n,1/2,1,1,1,...]     A266699  A266700  A266699 [1^n,1/3,1,1,1,...]     A266701  A266702  A266701 [1^n,2/3,1,1,1,...]     A266703  A266704  A266703 [1^n,sqrt(5),1,1,1,...] A266705  A266706  A266705 [1^n,tau,1,1,1,...]     A266707  A266708  A266707 [2,1^n,2,1,1,1,...]     A236428  A266709  A236428 The following forms of continued fractions have minimal polynomials of degree 4 and, after initial terms, satisfy the following linear recurrence relation: a(n) = 5*a(n-1) + 15*a(n-2) - 15*a(n-3) - 5*a(n-4) + a(n-5). [1^n,sqrt(2),1,1,1,...]:  A266710, A266711, A266712, A266713, A266710 [1^n,sqrt(3),1,1,1,...]:  A266799, A266800, A266801, A266802, A266799 [1^n,sqrt(6),1,1,1,...]:  A266804, A266805, A266806, A266807, A277804 Continued fractions [1^n,2^(1/3),1,1,1,...] have minimal polynomials of degree 6.  The coefficient sequences are linearly recurrenct with signature {13, 104, -260, -260, 104, 13, -1, 0, 0}; see A267078-A267083. Continued fractions [1^n,sqrt(2)+sqrt(3),1,1,1,...] have minimal polynomials of degree 8.  The coefficient sequences are linearly recurrenct with signature {13, 104, -260, -260, 104, 13, -1}; see A266803, A266808, A267061-A267066. LINKS Colin Barker, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (2,2,-1). FORMULA a(n) = 2*a(n-1) + 2*a(n-2) - a(n-3). G.f.:  (-3 + x + x^2)/(1 - 2 x - 2 x^2 + x^3). a(n) = (-1)*(2^(-n)*(3*(-2)^n+2*((3-sqrt(5))^(1+n)+(3+sqrt(5))^(1+n))))/5. - Colin Barker, Sep 27 2016 EXAMPLE Let p(n,x) be the minimal polynomial of the number given by the n-th continued fraction: [2,1,1,1,1,...] = (3 + sqrt(5))/2 has p(0,x) = x^2 - 3x + 1, so a(0) = -3; [1,2,1,1,1,...] = (5 - sqrt(5))/2 has p(1,x) = x^2 - 5x + 5, so a(1) = -5; [1,1,2,1,1,...] = (15 + sqrt(5))/10 has p(2,x) = 5x^2 - 15x + 11, so a(2) = -15. MATHEMATICA Program 1: u[n_] := Table[1, {k, 1, n}]; t[n_] := Join[u[n], {2}, {{1}}]; f[n_] := FromContinuedFraction[t[n]]; t = Table[MinimalPolynomial[f[n], x], {n, 0, 20}] Coefficient[t, x, 0] (* A236428 *) Coefficient[t, x, 1] (* A265762 *) Coefficient[t, x, 2] (* A236428 *) Program 2: LinearRecurrence[{2, 2, -1}, {-3, -5, -15}, 50] (* Vincenzo Librandi, Jan 05 2016 *) PROG (PARI) Vec((-3+x+x^2)/(1-2*x-2*x^2+x^3) + O(x^100)) \\ Altug Alkan, Jan 04 2016 (MAGMA) I:=[-3, -5, -15]; [n le 3 select I[n] else 2*Self(n-1)+2*Self(n-2)-Self(n-3): n in [1..30]]; // Vincenzo Librandi, Jan 05 2016 CROSSREFS Cf. A236428, A265802. Sequence in context: A089485 A279684 A146212 * A018516 A138017 A280764 Adjacent sequences:  A265759 A265760 A265761 * A265763 A265764 A265765 KEYWORD sign,easy AUTHOR Clark Kimberling, Jan 04 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 12 03:27 EST 2018. Contains 318052 sequences. (Running on oeis4.)