login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A266808
Coefficient of x in the minimal polynomial of the continued fraction [1^n,sqrt(2)+sqrt(3),1,1,...], where 1^n means n ones.
9
-168, -560, -101124, -3288624, -180132168, -7998247028, -384048485640, -17892957477264, -843263161727364, -39567408316416848, -1859687400468342888, -87350263553726629620, -4103880417768964672104, -192790045902230868971504, -9057117701582885083841028
OFFSET
0,1
COMMENTS
See A265762 for a guide to related sequences.
LINKS
Index entries for linear recurrences with constant coefficients, signature (34, 714, -4641, -12376, 12376, 4641, -714, -34, 1).
FORMULA
a(n) = 34*a(n-1) + 714*a(n-2) - 4641*a(n-3) - 12376*a(n-4) + 12376*a(n-5) + 4641*a(n-6) - 714*a(n-7) - 34*a(n-8) + a(n-9).
G.f.: -((4 (-42 + 1288 x + 9467 x^2 - 57564 x^3 - 198636 x^4 + 39086 x^5 - 5774 x^6 - 48 x^7 + 3 x^8))/(-1 + 34 x + 714 x^2 - 4641 x^3 - 2376 x^4 + 12376 x^5 + 4641 x^6 - 714 x^7 - 34 x^8 + x^9)).
EXAMPLE
Let u = sqrt(2) and v = sqrt(3), and let p(n,x) be the minimal polynomial of the number given by the n-th continued fraction:
[u+v,1,1,1,...] has p(0,x) = 49 - 168 x - 50 x^2 + 212 x^3 + 47 x^4 - 68 x^5 - 18 x^6 + 4 x^7 + x^8, so that a(0) = -168.
[1,u+v,1,1,1,...] has p(1,x) = 49 - 560 x + 2498 x^2 - 5760 x^3 + 7547 x^4 - 5760 x^5 + 2498 x^6 - 560 x^7 + 49 x^8, so that a(1) = -560;
[1,1,u+v,1,1,1...] has p(2,x) = 25281 - 101124 x + 173262 x^2 - 165852 x^3 + 96847 x^4 - 35252 x^5 + 7790 x^6 - 952 x^7 + 49 x^8, so that a(2) = -101124.
MATHEMATICA
u[n_] := Table[1, {k, 1, n}]; t[n_] := Join[u[n], {Sqrt[2] + Sqrt[3]}, {{1}}];
f[n_] := FromContinuedFraction[t[n]];
t = Table[MinimalPolynomial[f[n], x], {n, 0, 40}];
Coefficient[t, x, 0]; (* A266803 *)
Coefficient[t, x, 1]; (* A266808 *)
Coefficient[t, x, 2]; (* A267061 *)
Coefficient[t, x, 3]; (* A267062 *)
Coefficient[t, x, 4]; (* A267063 *)
Coefficient[t, x, 5]; (* A267064 *)
Coefficient[t, x, 6]; (* A267065 *)
Coefficient[t, x, 7]; (* A267066 *)
Coefficient[t, x, 8]; (* A266803 *)
KEYWORD
sign,easy
AUTHOR
Clark Kimberling, Jan 10 2016
STATUS
approved