|
|
A234731
|
|
Number of (n+1) X (1+1) 0..7 arrays with every 2 X 2 subblock having its diagonal sum differing from its antidiagonal sum by 8 (constant-stress 1 X 1 tilings).
|
|
1
|
|
|
168, 672, 2184, 8736, 29976, 119904, 426120, 1704480, 6197208, 24788832, 91531464, 366125856, 1366929816, 5467719264, 20584483080, 82337932320, 312012926808, 1248051707232, 4754424175944, 19017696703776, 72763338316056
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
|
|
FORMULA
|
Empirical: a(n) = 4*a(n-1) + 34*a(n-2) - 136*a(n-3) - 369*a(n-4) + 1476*a(n-5) + 1260*a(n-6) - 5040*a(n-7).
Empirical g.f.: 24*x*(7 - 259*x^2 + 3090*x^4 - 11760*x^6) / ((1 - 4*x)*(1 - 7*x^2)*(1 - 12*x^2)*(1 - 15*x^2)). - Colin Barker, Oct 16 2018
|
|
EXAMPLE
|
Some solutions for n=5:
1 7 7 2 1 5 2 6 7 2 0 4 3 6 1 5 7 3 5 0
4 2 2 5 5 1 5 1 4 7 4 0 7 2 4 0 0 4 0 3
0 6 5 0 3 7 2 6 6 1 2 6 2 5 3 7 4 0 6 1
3 1 1 4 7 3 5 1 3 6 4 0 6 1 4 0 0 4 2 5
1 7 7 2 0 4 1 5 5 0 0 4 3 6 2 6 4 0 7 2
5 3 1 4 7 3 7 3 0 3 4 0 5 0 5 1 2 6 0 3
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|