login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A265805
Coefficient of x in minimal polynomial of the continued fraction [1^n,5,1,1,1,...], where 1^n means n ones.
3
-9, -47, -105, -295, -753, -1991, -5193, -13615, -35625, -93287, -244209, -639367, -1673865, -4382255, -11472873, -30036391, -78636273, -205872455, -538981065, -1411070767, -3694231209, -9671622887, -25320637425, -66290289415, -173550230793, -454360402991
OFFSET
0,1
COMMENTS
See A265762 for a guide to related sequences.
FORMULA
a(n) = 2*a(n-1) + 2*a(n-2) - a(n-3).
G.f.: (-9 - 29 x + 7 x^2)/(1 - 2 x - 2 x^2 + x^3).
a(n) = (2^(-n)*(27*(-2)^n + 4*(3-sqrt(5))^n*(-9+5*sqrt(5)) - 4*(3+sqrt(5))^n*(9+5*sqrt(5))))/5. - Colin Barker, Oct 20 2016
EXAMPLE
Let p(n,x) be the minimal polynomial of the number given by the n-th continued fraction:
[5,1,1,1,1,...] = (9 + sqrt(5))/2 has p(0,x) = 19 - 9 x + x^2, so a(0) = 1;
[1,5,1,1,1,...] = (47 - sqrt(5))/38 has p(1,x) = 29 - 47 x + 19 x^2, so a(1) = 19;
[1,1,5,1,1,...] = (105 + sqrt(5))/58 has p(2,x) = 5 - 105 x + 29 x^2, so a(2) = 29.
MATHEMATICA
u[n_] := Table[1, {k, 1, n}]; t[n_] := Join[u[n], {5}, {{1}}];
f[n_] := FromContinuedFraction[t[n]];
t = Table[MinimalPolynomial[f[n], x], {n, 0, 20}]
Coefficient[t, x, 0] (* A265804 *)
Coefficient[t, x, 1] (* A265805 *)
Coefficient[t, x, 2] (* A236804 *)
LinearRecurrence[{2, 2, -1}, {-9, -47, -105}, 30] (* Vincenzo Librandi, Jan 06 2016 *)
PROG
(Magma) I:=[-9, -47, -105]; [n le 3 select I[n] else 2*Self(n-1)+2*Self(n-2)-Self(n-3): n in [1..30]]; // Vincenzo Librandi, Jan 06 2016
(PARI) Vec((-9-29*x+7*x^2)/(1-2*x-2*x^2+x^3) + O(x^100)) \\ Altug Alkan, Jan 07 2016
CROSSREFS
Sequence in context: A370622 A307955 A110675 * A274270 A100790 A055250
KEYWORD
sign,easy
AUTHOR
Clark Kimberling, Jan 05 2016
STATUS
approved