login
A370622
Coefficient of x^n in the expansion of ( (1-x)^2 / (1-x-x^2)^3 )^n.
3
1, 1, 9, 46, 293, 1806, 11538, 74173, 482157, 3154645, 20762014, 137270376, 911111522, 6067104434, 40514133081, 271195540971, 1819188150365, 12225956834430, 82301499780885, 554850642658483, 3745615502285478, 25315915432984852, 171292993893095996
OFFSET
0,3
FORMULA
a(n) = Sum_{k=0..floor(n/2)} binomial(3*n+k-1,k) * binomial(2*n-k-1,n-2*k).
The g.f. exp( Sum_{k>=1} a(k) * x^k/k ) has integer coefficients and equals (1/x) * Series_Reversion( x * (1-x-x^2)^3 / (1-x)^2 ). See A369488.
MATHEMATICA
a[n_]:=SeriesCoefficient[((1-x)^2/(1-x-x^2)^3)^n, {x, 0, n}]; Array[a, 23, 0] (* Stefano Spezia, May 01 2024 *)
PROG
(PARI) a(n, s=2, t=3, u=2) = sum(k=0, n\s, binomial(t*n+k-1, k)*binomial((t-u+1)*n-(s-1)*k-1, n-s*k));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, May 01 2024
STATUS
approved