login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A265803
Coefficient of x in minimal polynomial of the continued fraction [1^n,4,1,1,1,...], where 1^n means n ones.
3
-7, -29, -67, -185, -475, -1253, -3271, -8573, -22435, -58745, -153787, -402629, -1054087, -2759645, -7224835, -18914873, -49519771, -129644453, -339413575, -888596285, -2326375267, -6090529529, -15945213307, -41745110405, -109290117895, -286125243293
OFFSET
0,1
COMMENTS
See A265762 for a guide to related sequences.
FORMULA
a(n) = 2*a(n-1) + 2*a(n-2) - a(n-3).
G.f.: (-1)*(7 + 15*x - 5*x^2)/(1 - 2*x - 2*x^2 + x^3).
a(n) = (2^(-n)*(13*(-2)^n + 12*(3-sqrt(5))^n*(-2+sqrt(5)) - 12*(2+sqrt(5))*(3+sqrt(5))^n))/5. - Colin Barker, Oct 20 2016
a(n) = (13*(-1)^n - 12*Lucas(2*n+3))/5 = 5*(-1)^n - 12*F(n+1)*F(n+2), F=Fibonacci. - G. C. Greubel, Dec 12 2019
EXAMPLE
Let p(n,x) be the minimal polynomial of the number given by the n-th continued fraction:
[4,1,1,1,1,...] = (7 + sqrt(5))/2 has p(0,x) = 11 - 7 x + x^2, so a(0) = 1;
[1,4,1,1,1,...] = (29 - sqrt(5))/22 has p(1,x) = 19 - 29 x + 11 x^2, so a(1) = 11;
[1,1,4,1,1,...] = (67 + sqrt(5))/38 has p(2,x) = 59 - 67 x + 19 x^2, so a(2) = 19.
MAPLE
with(combinat); f:=fibonacci; seq( 5*(-1)^n - 12*f(n+1)*f(n+2), n=0..30); # G. C. Greubel, Dec 12 2019
MATHEMATICA
u[n_]:= Table[1, {k, n}]; t[n_]:= Join[u[n], {4}, {{1}}];
f[n_]:= FromContinuedFraction[t[n]];
t = Table[MinimalPolynomial[f[n], x], {n, 0, 20}]
Coefficient[t, x, 0] (* A265802 *)
Coefficient[t, x, 1] (* A265803 *)
Coefficient[t, x, 2] (* A236802 *)
LinearRecurrence[{2, 2, -1}, {-7, -29, -67}, 30] (* Vincenzo Librandi, Jan 06 2016 *)
PROG
(PARI) Vec((-7-15*x+5*x^2)/(1-2*x-2*x^2+x^3) + O(x^30)) \\ Altug Alkan, Jan 04 2016
(PARI) vector(31, n, f=fibonacci; -(5*(-1)^n + 12*f(n)*f(n+1)) ) \\ G. C. Greubel, Dec 12 2019
(Magma) I:=[-7, -29, -67]; [n le 3 select I[n] else 2*Self(n-1)+2*Self(n-2)-Self(n-3): n in [1..30]]; // Vincenzo Librandi, Jan 06 2016
(Sage) [(13*(-1)^n -12*lucas_number2(2*n+3, 1, -1))/5 for n in (0..30)] # G. C. Greubel, Dec 12 2019
(GAP) List([0..30], n-> (13*(-1)^n -12*Lucas(1, -1, 2*n+3)[2])/5 ); # G. C. Greubel, Dec 12 2019
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Clark Kimberling, Jan 04 2016
STATUS
approved