login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A066187
Sum of the second moments of all partitions of n.
1
0, 1, 7, 23, 66, 145, 321, 600, 1137, 1964, 3379, 5463, 8888, 13714, 21206, 31737, 47319, 68727, 99718, 141488, 200383, 279097, 387302, 530286, 724113, 976949, 1314106, 1751079, 2325412, 3062942, 4022617, 5244455, 6817630, 8808369, 11346219, 14536656, 18573495
OFFSET
0,3
COMMENTS
The first element of each partition is given weight 1.
LINKS
EXAMPLE
a(3) = 23 because the second moments of all partitions of 3 are {3}.{1},{2,1}.{1,4} and {1,1,1}.{1,4,9}, resulting in 3,6,14; summing to 23.
MAPLE
b:= proc(n, i, t) option remember; `if`(n=0, [1, 0],
`if`(i<1, [0$2], `if`(i>n, b(n, i-1, t), b(n, i-1, t)+
(h-> h+[0, h[1]*i*t^2])(b(n-i, i, t+1)))))
end:
a:= n-> b(n$2, 1)[2]:
seq(a(n), n=0..50); # Alois P. Heinz, Jan 29 2014
MATHEMATICA
Table[ Plus@@Map[ #.Range[ Length[ # ]]^2&, IntegerPartitions[ n ]], {n, 30} ]
(* Second program: *)
b[n_, i_, t_] := b[n, i, t] = If[n == 0, {1, 0},
If[i < 1, {0, 0}, If[i > n, b[n, i - 1, t], b[n, i - 1, t] +
# + {0, #[[1]]*i*t^2}& @ b[n - i, i, t + 1]]]];
a[n_] := b[n, n, 1][[2]];
a /@ Range[0, 50] (* Jean-François Alcover, Jun 05 2021, after Alois P. Heinz *)
CROSSREFS
Sequence in context: A343519 A365439 A266801 * A259214 A114246 A297315
KEYWORD
easy,nonn
AUTHOR
Wouter Meeussen, Dec 15 2001
STATUS
approved