OFFSET
0,3
COMMENTS
The first element of each partition is given weight 1.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..10000
FORMULA
G.f.: Sum_{k>=1} x^k/(1 - x^k)^3 / Product_{j>=1} (1 - x^j). - Ilya Gutkovskiy, Mar 05 2021
EXAMPLE
a(3)=13 because the first moments of all partitions of 3 are {3}.{1},{2,1}.{1,2} and {1,1,1}.{1,2,3}, resulting in 3,4,6; summing to 13.
MAPLE
b:= proc(n, i) option remember; `if`(n=0 or i=1, [1, n],
b(n, i-1)+(h-> h+[0, h[1]*i*(i+1)/2])(b(n-i, min(n-i, i))))
end:
a:= n-> b(n$2)[2]:
seq(a(n), n=0..50); # Alois P. Heinz, Jan 29 2014
MATHEMATICA
Table[ Plus@@ Map[ #.Range[ Length[ # ] ]&, IntegerPartitions[ n ] ], {n, 40} ]
(* Second program: *)
b[n_, i_] := b[n, i] = If[n == 0, {1, 0}, If[i < 1, {0, 0}, If[i > n, b[n, i - 1], b[n, i - 1] + Function[h, h + {0, h[[1]]*i*(i + 1)/2}][b[n - i, i]]]]]; a[n_] := b[n, n][[2]]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Aug 29 2016, after Alois P. Heinz *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Wouter Meeussen, Dec 15 2001
STATUS
approved