OFFSET
1,2
COMMENTS
Sum of hook lengths of all boxes in the Ferrers diagrams of all partitions of n (see the Guo-Niu Han paper, p. 25, Corollary 6.5). Example: a(3) = 17 because for the partitions (3), (2,1), (1,1,1) of n=3 the hook length multi-sets are {3,2,1}, {3,1,1}, {3,2,1}, respectively; the total sum of all hook lengths is 6+5+6 = 17. - Emeric Deutsch, May 15 2008
Partial sums of A206440. - Omar E. Pol, Feb 08 2012
Column k=2 of A213191. - Alois P. Heinz, Sep 20 2013
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..10000
Guo-Niu Han, An explicit expansion formula for the powers of the Euler product in terms of partition hook lengths, arXiv:0804.1849v3 [math.CO], May 09 2008.
FORMULA
a(n) = Sum_{k=1..n} sigma_2(k)*numbpart(n-k), where sigma_2(k)=sum of squares of divisors of k=A001157(k). - Vladeta Jovovic, Jan 26 2002
a(n) = Sum_{k>=0} k*A265245(n,k). - Emeric Deutsch, Dec 06 2015
G.f.: g(x) = (Sum_{k>=1} k^2*x^k/(1-x^k))/Product_{q>=1} (1-x^q). - Emeric Deutsch, Dec 06 2015
a(n) ~ 3*sqrt(2)*Zeta(3)/Pi^3 * exp(Pi*sqrt(2*n/3)) * sqrt(n). - Vaclav Kotesovec, May 28 2018
EXAMPLE
a(3) = 17 because the squares of all partitions of 3 are {9}, {4,1} and {1,1,1}, summing to 17.
MAPLE
b:= proc(n, i) option remember; local g, h;
if n=0 then [1, 0]
elif i<1 then [0, 0]
elif i>n then b(n, i-1)
else g:= b(n, i-1); h:= b(n-i, i);
[g[1]+h[1], g[2]+h[2] +h[1]*i^2]
fi
end:
a:= n-> b(n, n)[2]:
seq(a(n), n=1..40); # Alois P. Heinz, Feb 23 2012
# second Maple program:
g := (sum(k^2*x^k/(1-x^k), k = 1..100))/(product(1-x^k, k = 1..100)): gser := series(g, x = 0, 45): seq(coeff(gser, x, m), m = 1 .. 40); # Emeric Deutsch, Dec 06 2015
MATHEMATICA
Table[Apply[Plus, IntegerPartitions[n]^2, {0, 2}], {n, 30}]
(* Second program: *)
b[n_, i_] := b[n, i] = Module[{g, h}, Which[n==0, {1, 0}, i<1, {0, 0}, i>n, b[n, i-1], True, g = b[n, i-1]; h = b[n-i, i]; {g[[1]] + h[[1]], g[[2]] + h[[2]] + h[[1]]*i^2}]]; a[n_] := b[n, n][[2]]; Table[a[n], {n, 1, 40}] (* Jean-François Alcover, Aug 31 2015, after Alois P. Heinz *)
PROG
(PARI) a(n)=my(s); forpart(v=n, s+=sum(i=1, #v, v[i]^2)); s \\ Charles R Greathouse IV, Aug 31 2015
(PARI) a(n)=sum(k=1, n, sigma(k, 2)*numbpart(n-k)) \\ Charles R Greathouse IV, Aug 31 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
Wouter Meeussen, Dec 15 2001
EXTENSIONS
More terms from Naohiro Nomoto, Feb 07 2002
STATUS
approved