login
A066183
Total sum of squares of parts in all partitions of n.
15
1, 6, 17, 44, 87, 180, 311, 558, 910, 1494, 2302, 3608, 5343, 7986, 11554, 16714, 23549, 33270, 45942, 63506, 86338, 117156, 156899, 209926, 277520, 366260, 479012, 624956, 808935, 1044994, 1340364, 1715572, 2182935, 2770942, 3499379
OFFSET
1,2
COMMENTS
Sum of hook lengths of all boxes in the Ferrers diagrams of all partitions of n (see the Guo-Niu Han paper, p. 25, Corollary 6.5). Example: a(3) = 17 because for the partitions (3), (2,1), (1,1,1) of n=3 the hook length multi-sets are {3,2,1}, {3,1,1}, {3,2,1}, respectively; the total sum of all hook lengths is 6+5+6 = 17. - Emeric Deutsch, May 15 2008
Partial sums of A206440. - Omar E. Pol, Feb 08 2012
Column k=2 of A213191. - Alois P. Heinz, Sep 20 2013
Row sums of triangles A180681, A206561 and A299768. - Omar E. Pol, Mar 20 2018
FORMULA
a(n) = Sum_{k=1..n} sigma_2(k)*numbpart(n-k), where sigma_2(k)=sum of squares of divisors of k=A001157(k). - Vladeta Jovovic, Jan 26 2002
a(n) = Sum_{k>=0} k*A265245(n,k). - Emeric Deutsch, Dec 06 2015
G.f.: g(x) = (Sum_{k>=1} k^2*x^k/(1-x^k))/Product_{q>=1} (1-x^q). - Emeric Deutsch, Dec 06 2015
a(n) ~ 3*sqrt(2)*Zeta(3)/Pi^3 * exp(Pi*sqrt(2*n/3)) * sqrt(n). - Vaclav Kotesovec, May 28 2018
EXAMPLE
a(3) = 17 because the squares of all partitions of 3 are {9}, {4,1} and {1,1,1}, summing to 17.
MAPLE
b:= proc(n, i) option remember; local g, h;
if n=0 then [1, 0]
elif i<1 then [0, 0]
elif i>n then b(n, i-1)
else g:= b(n, i-1); h:= b(n-i, i);
[g[1]+h[1], g[2]+h[2] +h[1]*i^2]
fi
end:
a:= n-> b(n, n)[2]:
seq(a(n), n=1..40); # Alois P. Heinz, Feb 23 2012
# second Maple program:
g := (sum(k^2*x^k/(1-x^k), k = 1..100))/(product(1-x^k, k = 1..100)): gser := series(g, x = 0, 45): seq(coeff(gser, x, m), m = 1 .. 40); # Emeric Deutsch, Dec 06 2015
MATHEMATICA
Table[Apply[Plus, IntegerPartitions[n]^2, {0, 2}], {n, 30}]
(* Second program: *)
b[n_, i_] := b[n, i] = Module[{g, h}, Which[n==0, {1, 0}, i<1, {0, 0}, i>n, b[n, i-1], True, g = b[n, i-1]; h = b[n-i, i]; {g[[1]] + h[[1]], g[[2]] + h[[2]] + h[[1]]*i^2}]]; a[n_] := b[n, n][[2]]; Table[a[n], {n, 1, 40}] (* Jean-François Alcover, Aug 31 2015, after Alois P. Heinz *)
PROG
(PARI) a(n)=my(s); forpart(v=n, s+=sum(i=1, #v, v[i]^2)); s \\ Charles R Greathouse IV, Aug 31 2015
(PARI) a(n)=sum(k=1, n, sigma(k, 2)*numbpart(n-k)) \\ Charles R Greathouse IV, Aug 31 2015
KEYWORD
nonn
AUTHOR
Wouter Meeussen, Dec 15 2001
EXTENSIONS
More terms from Naohiro Nomoto, Feb 07 2002
STATUS
approved