login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A213191 Total sum A(n,k) of k-th powers of parts in all partitions of n; square array A(n,k), n>=0, k>=0, read by antidiagonals. 20
0, 0, 1, 0, 1, 3, 0, 1, 4, 6, 0, 1, 6, 9, 12, 0, 1, 10, 17, 20, 20, 0, 1, 18, 39, 44, 35, 35, 0, 1, 34, 101, 122, 87, 66, 54, 0, 1, 66, 279, 392, 287, 180, 105, 86, 0, 1, 130, 797, 1370, 1119, 660, 311, 176, 128, 0, 1, 258, 2319, 5024, 4775, 2904, 1281, 558, 270, 192 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,6

COMMENTS

In general, if k > 0 then column k is asymptotic to 2^((k-3)/2) * 3^(k/2) * k! * Zeta(k+1) / Pi^(k+1) * exp(Pi*sqrt(2*n/3)) * n^((k-1)/2). - Vaclav Kotesovec, May 27 2018

LINKS

Alois P. Heinz, Antidiagonals n = 0..140, flattened

FORMULA

A(n,k) = Sum_{j=1..n} A066633(n,j) * j^k.

EXAMPLE

Square array A(n,k) begins:

:   0,  0,   0,   0,    0,     0,     0, ...

:   1,  1,   1,   1,    1,     1,     1, ...

:   3,  4,   6,  10,   18,    34,    66, ...

:   6,  9,  17,  39,  101,   279,   797, ...

:  12, 20,  44, 122,  392,  1370,  5024, ...

:  20, 35,  87, 287, 1119,  4775, 21447, ...

:  35, 66, 180, 660, 2904, 14196, 73920, ...

MAPLE

b:= proc(n, p, k) option remember; `if`(n=0, [1, 0], `if`(p<1, [0, 0],

      add((l->`if`(m=0, l, l+[0, l[1]*p^k*m]))

          (b(n-p*m, p-1, k)), m=0..n/p)))

    end:

A:= (n, k)-> b(n, n, k)[2]:

seq(seq(A(n, d-n), n=0..d), d=0..10);

MATHEMATICA

b[n_, p_, k_] := b[n, p, k] = If[n == 0, {1, 0}, If[p < 1, {0, 0}, Sum[Function[l, If[m == 0, l, l + {0, First[l]*p^k*m}]][b[n - p*m, p - 1, k]], { m, 0, n/p}]]] ; a[n_, k_] := b[n, n, k][[2]]; Table[Table[a[n, d - n], {n, 0, d}], {d, 0, 10}] // Flatten (* Jean-François Alcover, Dec 12 2013, translated from Maple *)

(* T = A066633 *) T[n_, n_] = 1; T[n_, k_] /; k<n := T[n, k] = T[n-k, k] + PartitionsP[n-k]; T[_, _] = 0; A[n_, k_] := Sum[T[n, j]*j^k, {j, 1, n}]; Table[A[n-k, k], {n, 0, 10}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Dec 15 2016 *)

CROSSREFS

Columns k=0-10 give: A006128, A066186, A066183, A229325, A229326, A229327, A229328, A229329, A229330, A229331, A229332.

Rows n=0-10 give: A000004, A000012, A052548, A229354, A229355, A229356, A229357, A229358, A229359, A229360, A229361.

Main diagonal gives A252761.

Cf. A213180.

Sequence in context: A220421 A106683 A139601 * A079520 A229001 A208981

Adjacent sequences:  A213188 A213189 A213190 * A213192 A213193 A213194

KEYWORD

nonn,tabl

AUTHOR

Alois P. Heinz, Feb 28 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 25 13:31 EDT 2019. Contains 322461 sequences. (Running on oeis4.)