login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A229325
Total sum of cubes of parts in all partitions of n.
3
0, 1, 10, 39, 122, 287, 660, 1281, 2486, 4392, 7686, 12628, 20790, 32471, 50694, 76560, 115038, 168333, 245784, 350896, 499620, 699468, 975150, 1341077, 1838550, 2490092, 3361260, 4494084, 5986750, 7909231, 10416300, 13616768, 17745948, 22983345, 29672974
OFFSET
0,3
COMMENTS
The bivariate g.f. for the partition statistic "sum of cubes of the parts" is G(t,x) = 1/Product_{k>=1}(1 - t^{k^3}*x^k). The g.f. g given in the Formula section was obtained by evaluating dG/dt at t=1. - Emeric Deutsch, Dec 06 2015
FORMULA
a(n) = Sum_{k=1..n} A066633(n,k) * k^3.
G.f.: g(x) = (Sum_{k>=1} k^3*x^k/(1-x^k))/Product_{q>=1} (1-x^q). - Emeric Deutsch, Dec 06 2015
a(n) ~ sqrt(3)/5 * exp(Pi*sqrt(2*n/3)) * n. - Vaclav Kotesovec, May 28 2018
MAPLE
b:= proc(n, i) option remember; `if`(n=0, [1, 0],
`if`(i<1, [0, 0], `if`(i>n, b(n, i-1),
((g, h)-> g+h+[0, h[1]*i^3])(b(n, i-1), b(n-i, i)))))
end:
a:= n-> b(n, n)[2]:
seq(a(n), n=0..40);
MATHEMATICA
Table[Total[Flatten[IntegerPartitions[n]^3]], {n, 0, 40}] (* Harvey P. Dale, May 01 2016 *)
b[n_, i_] := b[n, i] = If[n==0, {1, 0}, If[i<1, {0, 0}, If[i>n, b[n, i-1], Function[{g, h}, g + h + {0, h[[1]]*i^3}][b[n, i-1], b[n-i, i]]]]];
a[n_] := b[n, n][[2]];
Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Aug 30 2016, after Alois P. Heinz *)
CROSSREFS
Column k=3 of A213191.
Sequence in context: A188480 A059722 A267748 * A074225 A055514 A055233
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Sep 20 2013
STATUS
approved