login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A229328
Total sum of 6th powers of parts in all partitions of n.
2
0, 1, 66, 797, 5024, 21447, 73920, 212951, 552378, 1292410, 2838234, 5823262, 11464628, 21488403, 39094986, 68600554, 117628414, 196085189, 321067770, 513857202, 810429626, 1254814258, 1918760856, 2889290459, 4305268546, 6331543700, 9226796660, 13297146272
OFFSET
0,3
COMMENTS
The bivariate g.f. for the partition statistic "sum of 6th powers the parts" is G(t,x) = 1/Product_{k>=1}(1 - t^{k^6}*x^k). The g.f. g at the Formula section has been obtained by evaluating dG/dt at t=1. - Emeric Deutsch, Dec 06 2015
FORMULA
a(n) = Sum_{k=1..n} A066633(n,k) * k^6.
G.f.: g(x) = (Sum_{k>=1} k^6*x^k/(1-x^k))/Product_{q>=1} (1-x^q). - Emeric Deutsch, Dec 06 2015
a(n) ~ 38880*sqrt(2)*Zeta(7)/Pi^7 * exp(Pi*sqrt(2*n/3)) * n^(5/2). - Vaclav Kotesovec, May 28 2018
MAPLE
b:= proc(n, i) option remember; `if`(n=0, [1, 0],
`if`(i<1, [0, 0], `if`(i>n, b(n, i-1),
((g, h)-> g+h+[0, h[1]*i^6])(b(n, i-1), b(n-i, i)))))
end:
a:= n-> b(n, n)[2]:
seq(a(n), n=0..40);
# second Maple program:
g := (sum(k^6*x^k/(1-x^k), k = 1..100))/(product(1-x^k, k = 1..100)): gser := series(g, x = 0, 45): seq(coeff(gser, x, m), m = 1 .. 40); # Emeric Deutsch, Dec 06 2015
MATHEMATICA
(* T = A066633 *) T[n_, n_] = 1; T[n_, k_] /; k < n := T[n, k] = T[n - k, k] + PartitionsP[n - k]; T[_, _] = 0; a[n_] := Sum[T[n, k]*k^6, {k, 1, n}]; Array[a, 40, 0] (* Jean-François Alcover, Dec 15 2016 *)
CROSSREFS
Column k=6 of A213191.
Sequence in context: A258917 A223152 A301544 * A101093 A293613 A304838
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Sep 20 2013
STATUS
approved