login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A079520
Triangular array related to tennis ball problem, read by rows.
5
0, 0, 1, 0, 1, 3, 0, 1, 4, 10, 0, 1, 5, 15, 31, 0, 1, 6, 21, 52, 105, 0, 1, 7, 28, 80, 185, 343, 0, 1, 8, 36, 116, 301, 644, 1198, 0, 1, 9, 45, 161, 462, 1106, 2304, 4056, 0, 1, 10, 55, 216, 678, 1784, 4088, 8144, 14506, 0, 1, 11, 66, 282, 960, 2744, 6832, 14976, 29482, 50350
OFFSET
0,6
COMMENTS
Rows have been reversed.
LINKS
D. Merlini, R. Sprugnoli and M. C. Verri, The tennis ball problem, J. Combin. Theory, A 99 (2002), 307-344. (Fig. A.3)
FORMULA
Let c, d, and g be given by: c(t) = (1-sqrt(1-4*t))/(2*t), d(t) = (1-(1+2*t)*sqrt(1-4*t) -(1- 2*t)*sqrt(1+4*t) +sqrt(1-16*t^2))/(4*t^2), and g(t, r) = d(t)*t^(r+1)*c(t)^(r+3). The rows of the triangle are calculated by the expansion of g(t, n-k) for n>=0, 0 <= k <= n. - G. C. Greubel, Jan 17 2019
EXAMPLE
0.
0, 1.
0, 1, 3.
0, 1, 4, 10.
0, 1, 5, 15, 31.
0, 1, 6, 21, 52, 105. ...
MATHEMATICA
c[t_]:= (1-Sqrt[1-4*t])/(2*t); d[t_]:= (1-(1+2*t)*Sqrt[1-4*t] -(1- 2*t)*Sqrt[1+4*t] +Sqrt[1-16*t^2])/(4*t^2); g[t_, r_]:= d[t]*t^(r+1) *c[t]^(r+3); Table[SeriesCoefficient[Series[g[t, n-k], {t, 0, n}], n], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Jan 17 2019 *)
CROSSREFS
Leading diagonal gives A079522.
Cf. A079513.
Sequence in context: A213191 A352449 A375546 * A229001 A208981 A357892
KEYWORD
nonn,tabl
AUTHOR
N. J. A. Sloane, Jan 22 2003
EXTENSIONS
Terms a(29) onward added by G. C. Greubel, Jan 17 2019
STATUS
approved