login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A079519
Related to tennis ball problem.
5
12, 284, 5436, 96768, 1664184, 28069444, 467722524, 7730252080, 127023181352, 2078332922360, 33894711502744, 551368536346176, 8950922822411504, 145068948446193428, 2347940754318431196, 37957946888159573968, 613052225104703442120, 9893099103451554441736
OFFSET
1,1
LINKS
D. Merlini, R. Sprugnoli and M. C. Verri, The tennis ball problem, J. Combin. Theory, A 99 (2002), 307-344. (Table A.4)
FORMULA
Let f, g, S1 and S3 be given by f(t) = sqrt(1-4*t), g(t) = sqrt(1+4*t), S1(t) = (1+f(t)-2*f(t)^2)*(1- f(t))^5/(t^3*(f(t)^2-f(t))^2*(2+f(t)+g(t))^2), S3(t) = 4*(1-f(t))^2*(1 -g(t))^2*(f(t)^2-(1+2*t)*f(t)-(1-6*t)*g(t)+f(t)*g(t))/(t^3*(2+f(t)+ g(t))^2*(g(t)^2-f(t)-g(t)+ f(t)*g(t))^2). Now let W(t) be given by W(t) = (S1(t) + S1(-t) + S3(t) + S3(-t))/4. The g.f. is the expansion of W(t). - G. C. Greubel, Jan 17 2019
EXAMPLE
G.f. = 12*t^2 + 284*t^4 + 5436*t^6 + 96768*t^8 + ... - G. C. Greubel, Jan 17 2019
MATHEMATICA
f[t_]:= Sqrt[1-4*t]; g[t_]:= Sqrt[1+4*t]; S1[t_]:= (1+f[t]-2*f[t]^2)*(1- f[t])^5/(t^3*(f[t]^2-f[t])^2*(2+f[t]+g[t])^2); S3[t_]:= 4*(1-f[t])^2*(1 -g[t])^2*(f[t]^2-(1+2*t)*f[t]-(1-6*t)*g[t]+f[t]*g[t])/(t^3*(2+f[t]+ g[t])^2*(g[t]^2-f[t]-g[t]+f[t]*g[t])^2); W[t_]:= (S1[t]+S1[-t]+S3[t]+ S3[-t])/4; Drop[CoefficientList[Series[W[t], {t, 0, 50}], t][[1 ;; ;; 2]], 1] (* G. C. Greubel, Jan 17 2019 *)
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jan 22 2003
EXTENSIONS
Terms a(5) onward added by G. C. Greubel, Jan 17 2019
STATUS
approved