login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Related to tennis ball problem.
5

%I #8 Jan 17 2019 17:21:06

%S 12,284,5436,96768,1664184,28069444,467722524,7730252080,127023181352,

%T 2078332922360,33894711502744,551368536346176,8950922822411504,

%U 145068948446193428,2347940754318431196,37957946888159573968,613052225104703442120,9893099103451554441736

%N Related to tennis ball problem.

%H G. C. Greubel, <a href="/A079519/b079519.txt">Table of n, a(n) for n = 1..500</a>

%H D. Merlini, R. Sprugnoli and M. C. Verri, <a href="http://dx.doi.org/10.1006/jcta.2002.3273">The tennis ball problem</a>, J. Combin. Theory, A 99 (2002), 307-344. (Table A.4)

%F Let f, g, S1 and S3 be given by f(t) = sqrt(1-4*t), g(t) = sqrt(1+4*t), S1(t) = (1+f(t)-2*f(t)^2)*(1- f(t))^5/(t^3*(f(t)^2-f(t))^2*(2+f(t)+g(t))^2), S3(t) = 4*(1-f(t))^2*(1 -g(t))^2*(f(t)^2-(1+2*t)*f(t)-(1-6*t)*g(t)+f(t)*g(t))/(t^3*(2+f(t)+ g(t))^2*(g(t)^2-f(t)-g(t)+ f(t)*g(t))^2). Now let W(t) be given by W(t) = (S1(t) + S1(-t) + S3(t) + S3(-t))/4. The g.f. is the expansion of W(t). - _G. C. Greubel_, Jan 17 2019

%e G.f. = 12*t^2 + 284*t^4 + 5436*t^6 + 96768*t^8 + ... - _G. C. Greubel_, Jan 17 2019

%t f[t_]:= Sqrt[1-4*t]; g[t_]:= Sqrt[1+4*t]; S1[t_]:= (1+f[t]-2*f[t]^2)*(1- f[t])^5/(t^3*(f[t]^2-f[t])^2*(2+f[t]+g[t])^2); S3[t_]:= 4*(1-f[t])^2*(1 -g[t])^2*(f[t]^2-(1+2*t)*f[t]-(1-6*t)*g[t]+f[t]*g[t])/(t^3*(2+f[t]+ g[t])^2*(g[t]^2-f[t]-g[t]+f[t]*g[t])^2); W[t_]:= (S1[t]+S1[-t]+S3[t]+ S3[-t])/4; Drop[CoefficientList[Series[W[t], {t, 0, 50}], t][[1 ;; ;; 2]], 1] (* _G. C. Greubel_, Jan 17 2019 *)

%Y Cf. A079513, A079514, A079515, A079516, A079517, A079518, A079520.

%K nonn

%O 1,1

%A _N. J. A. Sloane_, Jan 22 2003

%E Terms a(5) onward added by _G. C. Greubel_, Jan 17 2019