login
A079513
Triangular array (a Riordan array) related to tennis ball problem, read by rows.
11
1, 0, 1, 1, 1, 1, 0, 3, 2, 1, 6, 6, 6, 3, 1, 0, 22, 16, 10, 4, 1, 53, 53, 53, 31, 15, 5, 1, 0, 211, 158, 105, 52, 21, 6, 1, 554, 554, 554, 343, 185, 80, 28, 7, 1, 0, 2306, 1752, 1198, 644, 301, 116, 36, 8, 1, 6362, 6362, 6362, 4056, 2304, 1106, 462, 161, 45, 9, 1
OFFSET
0,8
COMMENTS
Riordan array (2/(2-x*c(x)+x*c(-x)), x*c(x)), with c(x) the g.f. of Catalan numbers (A000108). - Ralf Stephan, Dec 29 2013
LINKS
D. Merlini, R. Sprugnoli and M. C. Verri, The tennis ball problem, J. Combin. Theory, A 99 (2002), 307-344 (Table A.2).
EXAMPLE
Triangle starts
1;
0, 1;
1, 1, 1;
0, 3, 2, 1;
6, 6, 6, 3, 1;
0, 22, 16, 10, 4, 1;
53, 53, 53, 31, 15, 5, 1;
0, 211, 158, 105, 52, 21, 6, 1;
554, 554, 554, 343, 185, 80, 28, 7, 1;
0, 2306, 1752, 1198, 644, 301, 116, 36, 8, 1;
6362, 6362, 6362, 4056, 2304, 1106, 462, 161, 45, 9, 1;
MATHEMATICA
c[t_]:= (1-Sqrt[1-4*t])/(2*t); d[t_]:= (1-(1+2*t)*Sqrt[1-4*t] -(1-2*t)*Sqrt[1+4*t] +Sqrt[1-16*t^2])/(4*t^2); g[t_, r_]:= d[t]*(t*c[t])^r; Table[SeriesCoefficient[Series[g[t, k], {t, 0, n}], n], {n, 0, 10}, {k, 0, n}]//Flatten (* G. C. Greubel, Jan 16 2019 *)
CROSSREFS
First column is A066357 interspersed with 0's, 2nd column gives A079514.
Sequence in context: A208520 A114155 A192018 * A060408 A267121 A208518
KEYWORD
nonn,tabl
AUTHOR
N. J. A. Sloane, Jan 22 2003
EXTENSIONS
Edited and more terms added by Ralf Stephan, Dec 29 2013
STATUS
approved