login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A079517
Coefficients related to tennis ball problem.
6
1, 21, 301, 4088, 55354, 756059, 10442117, 145803900, 2056351566, 29262470042, 419730456306, 6062949606496, 88127311401876, 1288120149337735, 18922077118169717, 279209456350438708, 4136682188907493702, 61513664658938124486, 917795824360157700870
OFFSET
0,2
LINKS
D. Merlini, R. Sprugnoli and M. C. Verri, The tennis ball problem, J. Combin. Theory, A 99 (2002), 307-344. (Table A.3)
FORMULA
With c(t) = (1 - sqrt(1-4*t))/(2*t), d(t) = (1 -(1+2*t)*sqrt(1-4*t) -(1 - 2*t)*sqrt(1+4*t) + sqrt(1-16*t^2))/(4*t^2), and g(t, r) = d(t)*t^(r + 1)*c(t)^(r + 3) then the g.f. is given by the odd terms in the expansion of g(t,2) = 1*t^3 + 21*t^5 + 301*t^7 + 4088*t^9 + ... - G. C. Greubel, Jan 16 2019
MATHEMATICA
c[t_]:= (1-Sqrt[1-4*t])/(2*t); d[t_]:= (1-(1+2*t)*Sqrt[1-4*t] -(1-2*t)*Sqrt[1+4*t] +Sqrt[1-16*t^2])/(4*t^2); g[t_, r_]:= d[t]*t^(r+1)*c[t]^(r+3); Drop[CoefficientList[Series[g[t, 2], {t, 0, 60}], t][[2 ;; ;; 2]], 1] (* G. C. Greubel, Jan 16 2019 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jan 22 2003
EXTENSIONS
Terms a(5) onward added by G. C. Greubel, Jan 16 2019
STATUS
approved