login
A021784
Expansion of 1/((1-x)(1-4x)(1-5x)(1-11x)).
1
1, 21, 302, 3762, 43923, 497223, 5545264, 61398804, 677478725, 7463074905, 82149266706, 903924739926, 9944608539607, 109397965416267, 1203414334895828, 13237742692094328, 145616100380861769
OFFSET
0,2
FORMULA
G.f.: 1/((1-x)*(1-4*x)*(1-5*x)*(1-11*x)).
a(n) = -1/120 +2^(2n+6)/21 -5^(n+3)/24 +11^(n+3)/420. - Bruno Berselli, May 08 2013
a(n) = 21*a(n-1) - 139*a(n-2) + 339*a(n-3) - 220*a(n-4). - Wesley Ivan Hurt, Jan 01 2024
MATHEMATICA
CoefficientList[Series[1/((1 - x) (1 - 4 x) (1 - 5 x) (1 - 11 x)), {x, 0, 20}], x] (* Bruno Berselli, May 08 2013 *)
LinearRecurrence[{21, -139, 339, -220}, {1, 21, 302, 3762}, 20] (* Harvey P. Dale, Feb 07 2025 *)
PROG
(PARI) Vec(1/((1-x)*(1-4*x)*(1-5*x)*(1-11*x))+O(x^20)) \\ Bruno Berselli, May 08 2013
(Magma) m:=20; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/((1-x)*(1-4*x)*(1-5*x)*(1-11*x)))); // Bruno Berselli, May 08 2013
CROSSREFS
Cf. A019040 (first differences).
Sequence in context: A019839 A077513 A079517 * A019618 A081553 A021524
KEYWORD
nonn,easy,changed
AUTHOR
STATUS
approved