login
A377549
E.g.f. satisfies A(x) = 1 + x*A(x)^5*exp(x*A(x)^2).
1
1, 1, 12, 285, 10444, 520465, 32882406, 2519264797, 227003238792, 23526134771553, 2757165645132010, 360564513170510341, 52053350012338720332, 8222888925567102799441, 1410913077291231960911934, 261306906300110395598900685, 51955790654759866661097707536
OFFSET
0,3
FORMULA
a(n) = n! * Sum_{k=0..n} k^(n-k) * binomial(2*n+3*k+1,k)/( (2*n+3*k+1)*(n-k)! ).
PROG
(PARI) a(n) = n!*sum(k=0, n, k^(n-k)*binomial(2*n+3*k+1, k)/((2*n+3*k+1)*(n-k)!));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Oct 31 2024
STATUS
approved