login
A364982
E.g.f. satisfies A(x) = 1 + x*A(x)^2*exp(x*A(x)^2).
5
1, 1, 6, 69, 1204, 28345, 842406, 30282385, 1278159240, 61979238513, 3395850105610, 207490382754721, 13989267347891628, 1031687145559176457, 82618837044274734126, 7139807492658000170865, 662286433378726179463696, 65635135687587192429274849
OFFSET
0,3
FORMULA
a(n) = (n!/(2*n+1)) * Sum_{k=0..n} k^(n-k) * binomial(2*n+1,k)/(n-k)!.
PROG
(PARI) a(n) = n!*sum(k=0, n, k^(n-k)*binomial(2*n+1, k)/(n-k)!)/(2*n+1);
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Aug 15 2023
STATUS
approved