login
A364984
E.g.f. satisfies A(x) = 1 + x*A(x)^3*exp(x*A(x)).
4
1, 1, 8, 117, 2596, 77705, 2936406, 134228059, 7204913528, 444331053873, 30963240318250, 2406301353714731, 206354828717754036, 19357367027097743449, 1971809610601104110942, 216754216326949771274715, 25575749384428387961718256, 3224227609551980271408565985
OFFSET
0,3
FORMULA
a(n) = n! * Sum_{k=0..n} k^(n-k) * binomial(n+2*k+1,k)/( (n+2*k+1)*(n-k)! ).
PROG
(PARI) a(n) = n!*sum(k=0, n, k^(n-k)*binomial(n+2*k+1, k)/((n+2*k+1)*(n-k)!));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Aug 15 2023
STATUS
approved