login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A342182 Sum_{n>=0} a(n) * x^n / (n!)^2 = 1 / (1 - x * BesselI(0,2*sqrt(x))). 0
1, 1, 8, 117, 3184, 134025, 8141436, 672837277, 72634878016, 9923765772177, 1673881314096700, 341631408064928421, 82978986493779894288, 23653894531273155603961, 7819996460332550715977588, 2967815528758036870644773925, 1281517958938232539844046259456 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Table of n, a(n) for n=0..16.

FORMULA

Sum_{n>=0} a(n) * x^n / (n!)^2 = 1 / (1 - Sum_{n>=1} x^n / ((n-1)!)^2).

a(0) = 1; a(n) = Sum_{k=0..n-1} (binomial(n,k) * (n-k))^2 * a(k).

MATHEMATICA

nmax = 16; CoefficientList[Series[1/(1 - x BesselI[0, 2 Sqrt[x]]), {x, 0, nmax}], x] Range[0, nmax]!^2

a[0] = 1; a[n_] := a[n] = Sum[(Binomial[n, k] (n - k))^2 a[k], {k, 0, n - 1}]; Table[a[n], {n, 0, 16}]

PROG

(PARI) a(n) = {n!^2*polcoef(1 / (1 - sum(k=1, n, x^k / ((k-1)!)^2) + O(x*x^n)), n)} \\ Andrew Howroyd, Mar 04 2021

CROSSREFS

Cf. A006153, A101514, A336228, A337591.

Sequence in context: A085699 A046914 A341197 * A194494 A230911 A267752

Adjacent sequences:  A342179 A342180 A342181 * A342183 A342184 A342185

KEYWORD

nonn

AUTHOR

Ilya Gutkovskiy, Mar 04 2021

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 1 01:37 EST 2021. Contains 349426 sequences. (Running on oeis4.)