login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A342182
Sum_{n>=0} a(n) * x^n / (n!)^2 = 1 / (1 - x * BesselI(0,2*sqrt(x))).
0
1, 1, 8, 117, 3184, 134025, 8141436, 672837277, 72634878016, 9923765772177, 1673881314096700, 341631408064928421, 82978986493779894288, 23653894531273155603961, 7819996460332550715977588, 2967815528758036870644773925, 1281517958938232539844046259456
OFFSET
0,3
FORMULA
Sum_{n>=0} a(n) * x^n / (n!)^2 = 1 / (1 - Sum_{n>=1} x^n / ((n-1)!)^2).
a(0) = 1; a(n) = Sum_{k=0..n-1} (binomial(n,k) * (n-k))^2 * a(k).
a(n) ~ n!^2 / ((1 + r^(3/2)*BesselI(1, 2*sqrt(r))) * r^n), where r = 0.592860029867912878114616561736048937618032595935338954527835... is the root of the equation r*BesselI(0, 2*sqrt(r)) = 1. - Vaclav Kotesovec, May 04 2024
MATHEMATICA
nmax = 16; CoefficientList[Series[1/(1 - x BesselI[0, 2 Sqrt[x]]), {x, 0, nmax}], x] Range[0, nmax]!^2
a[0] = 1; a[n_] := a[n] = Sum[(Binomial[n, k] (n - k))^2 a[k], {k, 0, n - 1}]; Table[a[n], {n, 0, 16}]
PROG
(PARI) a(n) = {n!^2*polcoef(1 / (1 - sum(k=1, n, x^k / ((k-1)!)^2) + O(x*x^n)), n)} \\ Andrew Howroyd, Mar 04 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Mar 04 2021
STATUS
approved