The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A101514 Shifts one place left under the square binomial transform (A008459): a(0) = 1, a(n) = Sum_{k=0..n-1} C(n-1,k)^2*a(k). 6
 1, 1, 2, 7, 35, 236, 2037, 21695, 277966, 4198635, 73558135, 1475177880, 33495959399, 853167955357, 24182881926558, 757554068775721, 26068954296880361, 980202973852646786, 40079727064364154465, 1774594774575753650941, 84756211791797266285252 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Equals the main diagonal of symmetric square array A101515 shift right. Empirical: a(n) = sum((number of standard immaculate tableaux of shape m)^2, m|=n), where this sum is over all compositions m of n > 0. - John M. Campbell, Jul 07 2017 LINKS Vaclav Kotesovec, Table of n, a(n) for n = 0..330 FORMULA E.g.f. satisfies: B(x)/A(x) = Sum_{n>=0} x^n/n!^2 where A(x) = Sum_{n>=0} a(n)*x^n/n!^2 and B(x) = Sum_{n>=0} a(n+1)*x^n/n!^2. - Paul D. Hanna, Oct 10 2014 EXAMPLE The binomial transform of the rows of the term-wise product of this sequence with the rows of Pascal's triangle produces the symmetric square array A101515, in which the main diagonal equals this sequence shift left: BINOMIAL[1*1] = [(1),1,1,1,1,1,1,1,1,...], BINOMIAL[1*1,1*1] = [1,(2),3,4,5,6,7,8,9,...], BINOMIAL[1*1,1*2,2*1] = [1,3,(7),13,21,31,43,57,73,...], BINOMIAL[1*1,1*3,2*3,7*1] = [1,4,13,(35),77,146,249,393,...], BINOMIAL[1*1,1*4,2*6,7*4,35*1] = [1,5,21,77,(236),596,1290,...], BINOMIAL[1*1,1*5,2*10,7*10,35*5,236*1] = [1,6,31,146,596,(2037),...],... Thus the square binomial transform shifts this sequence one place left: a(5) = 236 = 1^2*(1) + 4^2*(1) + 6^2*(2) + 4^2*(7) + 1^2*(35), a(6) = 2037 = 1^2*(1) + 5^2*(1) + 10^2*(2) + 10^2*(7) + 5^2*(35) + 1^2*(236). MAPLE a:= proc(n) option remember; if n<=0 then 1 else       add(binomial(n-1, k)^2 *a(k), k=0..n-1) fi     end: seq(a(n), n=0..25);  # Alois P. Heinz, Sep 05 2008 MATHEMATICA a[0] = 1; a[n_] := Sum[Binomial[n - 1, k]^2 a[k], {k, 0, n - 1}]; Table[a[i], {i, 0, 20}] (* Philip B. Zhang, Oct 10 2014 *) PROG (PARI) {a(n)=if(n==0, 1, sum(k=0, n-1, binomial(n-1, k)^2*a(k)))} for(n=0, 20, print1(a(n), ", ")) CROSSREFS Cf. A008459, A101515, A101516. Sequence in context: A000154 A003713 A058129 * A247240 A266356 A196857 Adjacent sequences:  A101511 A101512 A101513 * A101515 A101516 A101517 KEYWORD nonn AUTHOR Paul D. Hanna, Dec 06 2004 EXTENSIONS Typo in definition corrected by Philip B. Zhang, Oct 10 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 2 07:33 EST 2021. Contains 349437 sequences. (Running on oeis4.)