login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A101516
Antidiagonal sums of symmetric square array A101515 and also equals the binomial transform of a sequence formed from terms of A101514 repeated twice.
2
1, 2, 4, 8, 17, 38, 91, 232, 632, 1824, 5571, 17892, 60355, 212898, 784416, 3008480, 11997341, 49612426, 212536067, 941213428, 4305049140, 20302469824, 98641434683, 493038167880, 2533414749409, 13366134856170, 72361098996208
OFFSET
0,2
COMMENTS
A101514 equals the main diagonal of A101515 shift one place right and also A101514 shifts one place left under the square binomial transform (A008459): A101514(n+1) = Sum_{k=0..n-1} C(n-1,k)^2*A101514(k).
FORMULA
G.f.: A(x) = G101514(x^2/(1-x)^2)/(1-x)^2, where G101514(x)= g.f. of A101514. a(n) = Sum_{k=0..n} C(n, k)*A101514([k/2]).
EXAMPLE
Given A101514 = [1,1,2,7,35,236,2037,21695,277966,4198635,...],
the binomial transform of A101514 terms repeated twice returns this sequence:
BINOMIAL[1,1,1,1,2,2,7,7,35,35,...] = [1,2,4,8,17,38,91,232,632,1824,...].
PROG
(PARI) {a(n)=sum(k=0, n, binomial(n, k)* if(k\2==0, 1, sum(j=0, k\2-1, binomial(k\2-1, j)^2* sum(i=0, 2*j, (-1)^(2*j-i)*binomial(2*j, i)*a(i)))))}
CROSSREFS
Sequence in context: A081124 A340776 A090901 * A118928 A325921 A049312
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 06 2004
STATUS
approved