login
A325921
Number of Motzkin meanders of length n with an even number of humps and an even number of peaks.
7
1, 2, 4, 8, 17, 38, 92, 239, 653, 1832, 5192, 14726, 41683, 117822, 333312, 945952, 2698117, 7740920, 22337788, 64788768, 188683267, 551179370, 1613612996, 4731245903, 13888157307, 40804653640, 119984904744, 353085202434, 1039830559085, 3064566227434
OFFSET
0,2
COMMENTS
A Motzkin meander is a lattice path with steps from the set {D=-1, H=0, U=1} that starts at (0,0), and never goes below the x-axis.
A peak is an occurrence of the pattern UD.
A hump is an occurrence of the pattern UHH...HD (the number of Hs in the pattern is not fixed, and can be 0).
LINKS
FORMULA
G.f.: ( (-1+4*t-3*t^2+sqrt(-3*t^4+4*t^3+2*t^2-4*t+1))/(3*t^2-4*t+1) + (-1+4*t-5*t^2+2*t^3+sqrt(4*t^6-12*t^5+13*t^4-8*t^3+6*t^2-4*t+1))/(-2*t^3+5*t^2-4*t+1) + (-1+4*t-5*t^2+sqrt(5*t^4-4*t^3+6*t^2-4*t+1))/(5*t^2-4*t+1) + (-1+4*t-3*t^2-2*t^3+sqrt(4*t^6+4*t^5-11*t^4+8*t^3+2*t^2-4*t+1))/(2*t^3+3*t^2-4*t+1) ) / (8*t).
a(n) ~ 3^(n + 1/2) / (4*sqrt(Pi*n)). - Vaclav Kotesovec, Jul 03 2019
a(n) + A325923(n) = A307575(n). - R. J. Mathar, Jan 25 2023
a(n) + A325925(n) = A307555(n). - R. J. Mathar, Jan 25 2023
EXAMPLE
For n=0, 1, 2, 3 there are 2^n paths: all the paths without D (0 humps, 0 peaks).
For example, for n=3: UUU, UUH, UHU, UHH, HUU, HUH, HHU, HHH.
For n=4, the "extra" path is UDUD (2 humps, 2 peaks).
The smallest example with #(humps) <> #(peaks) is UHDUHD (2 humps, 0 peaks).
MAPLE
b:= proc(x, y, t, p, h) option remember; `if`(x=0, `if`(p+h=0, 1, 0),
`if`(y>0, b(x-1, y-1, 0, irem(p+`if`(t=1, 1, 0), 2), irem(h+
`if`(t=2, 1, 0), 2)), 0)+b(x-1, y, `if`(t>0, 2, 0), p, h)+
b(x-1, y+1, 1, p, h))
end:
a:= n-> b(n, 0$4):
seq(a(n), n=0..35); # Alois P. Heinz, Jul 03 2019
MATHEMATICA
CoefficientList[Series[(1/(8*x))*((-1 + 4*x - 3*x^2 + Sqrt[(-(-1 + x)^2)* (-1 + 2*x + 3*x^2)])/ (1 - 4*x + 3*x^2) - (-1 + 4*x - 5*x^2 + 2*x^3 + Sqrt[(-1 + x)^3*(-1 + x + 4*x^3)])/((-1 + x)^2* (-1 + 2*x)) + (-1 + 4*x - 5*x^2 + Sqrt[1 - 4*x + 6*x^2 - 4*x^3 + 5*x^4])/ (1 - 4*x + 5*x^2) + (-1 + 4*x - 3*x^2 - 2*x^3 + Sqrt[1 - 4*x + 2*x^2 + 8*x^3 - 11*x^4 + 4*x^5 + 4*x^6])/(1 - 4*x + 3*x^2 + 2*x^3)), {x, 0, 30}], x] (* Vaclav Kotesovec, Jul 03 2019 *)
CROSSREFS
Sequence in context: A090901 A101516 A118928 * A049312 A132043 A055545
KEYWORD
nonn
AUTHOR
Andrei Asinowski, Jun 27 2019
STATUS
approved