login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A307575
Number of Motzkin meanders of length n with an even number of peaks.
1
1, 2, 4, 9, 22, 56, 148, 402, 1112, 3118, 8832, 25205, 72342, 208560, 603404, 1750785, 5092046, 14839710, 43321976, 126661355, 370813762, 1086877792, 3189091724, 9366371000, 27533212140, 81001276874, 238478223648, 702592110803, 2071257446234, 6109731270056
OFFSET
0,2
COMMENTS
A Motzkin meander is a lattice path with steps from the set {D=-1, H=0, U=1} that starts at (0,0), and never goes below the x-axis.
A peak is an occurrence of the pattern UD.
FORMULA
G.f.: (sqrt((1+t)*(1-3*t))/(1-3*t) + sqrt((1-t)*(1-2*t)*(1+t+2*t^2))/((1-t)*(1-2*t)) -2) / (4*t).
D-finite with recurrence -3*(n+1)*(n-2)*a(n) +4*(4*n^2-7*n-3)*a(n-1) +3*(-7*n^2+17*n-2)*a(n-2) +4*n*(n-3)*a(n-3) -(n-3)*(25*n-82)*a(n-4) +4*(n-3)*(6*n-19)*a(n-5) +(61*n^2-575*n+1302)*a(n-6) -4*(11*n-37)*(n-6)*a(n-7) -12*(n-6)*(n-7)*a(n-8)=0. - R. J. Mathar, Mar 06 2022
a(n) + A307577(n) = A005773(n+1). - R. J. Mathar, Jan 25 2023
EXAMPLE
For n = 3 the a(3) = 9 paths are UUU, UUH, UHU, UHH, UHD, HUU, HUH, HHU, HHH.
MAPLE
b:= proc(x, y, t, c) option remember; `if`(y<0, 0, `if`(x=0, 1-c,
b(x-1, y-1, 0, irem(c+t, 2))+b(x-1, y, 0, c)+b(x-1, y+1, 1, c)))
end:
a:= n-> b(n, 0$3):
seq(a(n), n=0..35); # Alois P. Heinz, Apr 16 2019
MATHEMATICA
b[x_, y_, t_, c_] := b[x, y, t, c] = If[y < 0, 0, If[x == 0, 1-c, b[x-1, y-1, 0, Mod[c+t, 2]] + b[x-1, y, 0, c] + b[x-1, y+1, 1, c]]];
a[n_] := b[n, 0, 0, 0];
a /@ Range[0, 35] (* Jean-François Alcover, May 12 2020, after Maple *)
CROSSREFS
Cf. A001006.
Sequence in context: A037245 A244886 A143017 * A301362 A130018 A352176
KEYWORD
nonn
AUTHOR
Andrei Asinowski, Apr 15 2019
STATUS
approved