The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A244886 G.f.: (1-x+sqrt(1-2*x-3*x^2))/(1-3*x+x^2+x^3+(1-x^2)*sqrt(1-2*x-3*x^2)). 2
 1, 1, 2, 4, 9, 22, 56, 147, 393, 1065, 2915, 8042, 22330, 62339, 174837, 492313, 1391134, 3943130, 11207594, 31934552, 91197474, 260969372, 748176873, 2148622932, 6180146228, 17801978083, 51347929943, 148293450023, 428774359142, 1241110916678 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 (terms 0..200 from Vincenzo Librandi) J.-L. Baril, A. Petrossian, Equivalence classes of Dyck paths modulo some statistics, Discrete Mathematics, Volume 338, Issue 4, 6 April 2015, Pages 655-660. See Theorem 1. K. Manes, A. Sapounakis, I. Tasoulas, P. Tsikouras, Equivalence classes of ballot paths modulo strings of length 2 and 3, arXiv:1510.01952 [math.CO], 2015. FORMULA a(n) ~ 3^(n+7/2)/(4*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Jul 10 2014 Conjecture D-finite with recurrence: n*a(n) +(-5*n+3)*a(n-1) +2*(n)*a(n-2) +(13*n-30)*a(n-3) +3*(-1)*a(n-4) +(-8*n+21)*a(n-5) +3*(-n+3)*a(n-6)=0. - R. J. Mathar, Jan 24 2020 MATHEMATICA CoefficientList[Series[(1 - x + Sqrt[1 - 2 x - 3 x^2])/(1 - 3 x + x^2 + x^3 + (1 - x^2) Sqrt[1 - 2 x - 3 x^2]), {x, 0, 40}], x] (* Vincenzo Librandi, Jul 10 2014 *) PROG (PARI) x='x+O('x^50); Vec((1-x+sqrt(1-2*x-3*x^2))/(1-3*x+x^2+x^3+(1-x^2)*sqrt(1-2*x-3*x^2))) \\ G. C. Greubel, Apr 05 2017 CROSSREFS Sequence in context: A025265 A152225 A037245 * A143017 A307575 A301362 Adjacent sequences:  A244883 A244884 A244885 * A244887 A244888 A244889 KEYWORD nonn AUTHOR N. J. A. Sloane, Jul 09 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 22 21:29 EDT 2021. Contains 345393 sequences. (Running on oeis4.)