login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A244884
Expansion of (-2 +x^2 +x -x*sqrt(1-2*x-3*x^2))/(-1 +x -sqrt(1-2*x-3*x^2)).
3
1, 1, 1, 2, 5, 12, 30, 76, 196, 512, 1353, 3610, 9713, 26324, 71799, 196938, 542895, 1503312, 4179603, 11662902, 32652735, 91695540, 258215664, 728997192, 2062967382, 5850674704, 16626415975, 47337954326, 135015505407, 385719506620, 1103642686382
OFFSET
0,4
COMMENTS
For n > 1, a(n) is the number of Motzkin n-paths that start with an up step. - Gennady Eremin, Sep 18 2021
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000 (terms 0..200 from Vincenzo Librandi)
J.-L. Baril and A. Petrossian, Equivalence classes of Dyck paths modulo some statistics, 2014.
FORMULA
a(n) ~ 3^(n+1/2)/(sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Jul 10 2014
Conjecture D-finite with recurrence: (n+2)*a(n) +(-3*n-1)*a(n-1) -n*a(n-2) +3*(n-3)*a(n-3)=0. - R. J. Mathar, Jan 24 2020
G.f.: x + (1-x)*M(x), where M(x) is the g.f. of A001006. - Gennady Eremin, Feb 14 2021
MATHEMATICA
CoefficientList[Series[(-2 + x^2 + x - x Sqrt[1 - 2 x - 3 x^2])/(-1 + x - Sqrt[1 - 2 x - 3 x^2]), {x, 0, 30}], x] (* Vincenzo Librandi, Jul 10 2014 *)
PROG
(PARI) my(x='x + O('x^50)); Vec((-2 +x^2 +x -x*sqrt(1-2*x-3*x^2))/(-1 +x -sqrt(1-2*x-3*x^2))) \\ G. C. Greubel, Feb 14 2017
CROSSREFS
Apart from initial terms, same as A002026 and A105695.
Cf. A001006.
Sequence in context: A051450 A038508 A105695 * A002026 A026938 A086622
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jul 09 2014
STATUS
approved