login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A244882
Expansion of (1 + 2*x + 2*x^2) / (1 - x)^6.
1
1, 8, 35, 110, 280, 616, 1218, 2220, 3795, 6160, 9581, 14378, 20930, 29680, 41140, 55896, 74613, 98040, 127015, 162470, 205436, 257048, 318550, 391300, 476775, 576576, 692433, 826210, 979910, 1155680, 1355816, 1582768, 1839145, 2127720, 2451435, 2813406
OFFSET
0,2
LINKS
R. P. Stanley, Examples of Magic Labelings, Unpublished Notes, 1973 [Cached copy, with permission]See page 33.
FORMULA
G.f.: (1 + 2*x + 2*x^2) / (1 - x)^6.
From Colin Barker, Jan 12 2017: (Start)
a(n) = (24 + 62*n + 63*n^2 + 33*n^3 + 9*n^4 + n^5) / 24.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n>5.
(End)
MATHEMATICA
CoefficientList[Series[(1+2x+2x^2)/(1-x)^6, {x, 0, 40}], x] (* or *) LinearRecurrence[{6, -15, 20, -15, 6, -1}, {1, 8, 35, 110, 280, 616}, 40] (* Harvey P. Dale, Dec 26 2016 *)
PROG
(PARI) Vec((1 + 2*x + 2*x^2) / (1 - x)^6 + O(x^40)) \\ Colin Barker, Jan 12 2017
CROSSREFS
Sequence in context: A279743 A189592 A285737 * A006600 A161456 A005732
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Jul 08 2014
STATUS
approved