|
|
A244882
|
|
Expansion of (1 + 2*x + 2*x^2) / (1 - x)^6.
|
|
1
|
|
|
1, 8, 35, 110, 280, 616, 1218, 2220, 3795, 6160, 9581, 14378, 20930, 29680, 41140, 55896, 74613, 98040, 127015, 162470, 205436, 257048, 318550, 391300, 476775, 576576, 692433, 826210, 979910, 1155680, 1355816, 1582768, 1839145, 2127720, 2451435, 2813406
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
Colin Barker, Table of n, a(n) for n = 0..1000
R. P. Stanley, Examples of Magic Labelings, Unpublished Notes, 1973 [Cached copy, with permission]See page 33.
Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).
|
|
FORMULA
|
From Colin Barker, Jan 12 2017: (Start)
a(n) = (24 + 62*n + 63*n^2 + 33*n^3 + 9*n^4 + n^5) / 24.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n>5.
(End)
|
|
MATHEMATICA
|
CoefficientList[Series[(1+2x+2x^2)/(1-x)^6, {x, 0, 40}], x] (* or *) LinearRecurrence[{6, -15, 20, -15, 6, -1}, {1, 8, 35, 110, 280, 616}, 40] (* Harvey P. Dale, Dec 26 2016 *)
|
|
PROG
|
(PARI) Vec((1 + 2*x + 2*x^2) / (1 - x)^6 + O(x^40)) \\ Colin Barker, Jan 12 2017
|
|
CROSSREFS
|
Sequence in context: A279743 A189592 A285737 * A006600 A161456 A005732
Adjacent sequences: A244879 A244880 A244881 * A244883 A244884 A244885
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
N. J. A. Sloane, Jul 08 2014
|
|
STATUS
|
approved
|
|
|
|