Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #13 Apr 20 2024 13:44:53
%S 1,8,35,110,280,616,1218,2220,3795,6160,9581,14378,20930,29680,41140,
%T 55896,74613,98040,127015,162470,205436,257048,318550,391300,476775,
%U 576576,692433,826210,979910,1155680,1355816,1582768,1839145,2127720,2451435,2813406
%N Expansion of (1 + 2*x + 2*x^2) / (1 - x)^6.
%H Colin Barker, <a href="/A244882/b244882.txt">Table of n, a(n) for n = 0..1000</a>
%H R. P. Stanley, <a href="/A002721/a002721.pdf">Examples of Magic Labelings</a>, Unpublished Notes, 1973 [Cached copy, with permission]See page 33.
%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (6,-15,20,-15,6,-1).
%F G.f.: (1 + 2*x + 2*x^2) / (1 - x)^6.
%F From _Colin Barker_, Jan 12 2017: (Start)
%F a(n) = (24 + 62*n + 63*n^2 + 33*n^3 + 9*n^4 + n^5) / 24.
%F a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n>5.
%F (End)
%t CoefficientList[Series[(1+2x+2x^2)/(1-x)^6,{x,0,40}],x] (* or *) LinearRecurrence[{6,-15,20,-15,6,-1},{1,8,35,110,280,616},40] (* _Harvey P. Dale_, Dec 26 2016 *)
%o (PARI) Vec((1 + 2*x + 2*x^2) / (1 - x)^6 + O(x^40)) \\ _Colin Barker_, Jan 12 2017
%K nonn,easy
%O 0,2
%A _N. J. A. Sloane_, Jul 08 2014