|
|
A244881
|
|
Expansion of (1 + 26*x + 109*x^2 + 109*x^3 + 26*x^4 + x^5) / (1 - x)^8.
|
|
1
|
|
|
1, 34, 353, 2037, 8272, 26585, 72302, 173502, 377739, 760804, 1437799, 2576795, 4415346, 7280131, 11609996, 17982668, 27145413, 40049910, 57891613, 82153873, 114657092, 157613181, 213685594, 286055210, 378492335, 495435096, 642074499, 824446423, 1049530822
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
Colin Barker, Table of n, a(n) for n = 0..1000
Rida Ait El Manssour and Anna-Laura Sattelberger, Combinatorial Differential Algebra of x^p, arXiv:2102.03182 [math.AG], 2021. Mentions this sequence.
R. P. Stanley, Examples of Magic Labelings, Unpublished Notes, 1973 [Cached copy, with permission]. See page 31.
Index entries for linear recurrences with constant coefficients, signature (8,-28,56,-70,56,-28,8,-1).
|
|
FORMULA
|
From Colin Barker, Jan 12 2017: (Start)
a(n) = (2520 + 11526*n + 22617*n^2 + 24724*n^3 + 16275*n^4 + 6454*n^5 + 1428*n^6 + 136*n^7) / 2520.
a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8) for n>7.
(End)
|
|
PROG
|
(PARI) Vec((1 + x)*(1 + 25*x + 84*x^2 + 25*x^3 + x^4) / (1 - x)^8 + O(x^30)) \\ Colin Barker, Jan 12 2017
|
|
CROSSREFS
|
Sequence in context: A251938 A059338 A301954 * A296833 A202413 A168122
Adjacent sequences: A244878 A244879 A244880 * A244882 A244883 A244884
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
N. J. A. Sloane, Jul 08 2014
|
|
STATUS
|
approved
|
|
|
|