login
A244879
Number of magic labelings of the cycle-of-loops graph LOOP X C_6 having magic sum n, where LOOP is the 1-vertex, 1-loop-edge graph.
12
1, 18, 129, 571, 1884, 5103, 11998, 25362, 49347, 89848, 154935, 255333, 404950, 621453, 926892, 1348372, 1918773, 2677518, 3671389, 4955391, 6593664, 8660443, 11241066, 14433030, 18347095, 23108436, 28857843, 35752969, 43969626, 53703129, 65169688, 78607848
OFFSET
0,2
LINKS
R. P. Stanley, Examples of Magic Labelings, Unpublished Notes, 1973 [Cached copy, with permission]
FORMULA
G.f.: (1 + 11*x + 24*x^2 + 11*x^3 + x^4) / (1 - x)^7.
From Colin Barker, Jan 11 2017: (Start)
a(n) = (120 + 438*n + 677*n^2 + 570*n^3 + 275*n^4 + 72*n^5 + 8*n^6) / 120.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n > 6.
(End)
MATHEMATICA
CoefficientList[Series[(1 + 11 x + 24 x^2 + 11 x^3 + x^4)/(1 - x)^7, {x, 0, 31}], x] (* Michael De Vlieger, Sep 15 2017 *)
LinearRecurrence[{7, -21, 35, -35, 21, -7, 1}, {1, 18, 129, 571, 1884, 5103, 11998}, 40] (* Harvey P. Dale, Jul 30 2019 *)
PROG
(PARI) Vec((1 + 11*x + 24*x^2 + 11*x^3 + x^4) / (1 - x)^7 + O(x^40)) \\ Colin Barker, Jan 11 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Jul 08 2014
EXTENSIONS
Name corrected by David J. Seal, Sep 13 2017
STATUS
approved