|
|
A006600
|
|
Total number of triangles visible in regular n-gon with all diagonals drawn.
(Formerly M4513)
|
|
20
|
|
|
1, 8, 35, 110, 287, 632, 1302, 2400, 4257, 6956, 11297, 17234, 25935, 37424, 53516, 73404, 101745, 136200, 181279, 236258, 306383, 389264, 495650, 620048, 772785, 951384, 1167453, 1410350, 1716191, 2058848, 2463384, 2924000, 3462305, 4067028, 4776219, 5568786, 6479551
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
3,2
|
|
COMMENTS
|
Place n equally-spaced points on a circle, join them in all possible ways; how many triangles can be seen?
|
|
REFERENCES
|
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
|
|
LINKS
|
|
|
FORMULA
|
|
|
EXAMPLE
|
a(4) = 8 because in a quadrilateral the diagonals cross to make four triangles, which pair up to make four more.
|
|
MATHEMATICA
|
del[m_, n_]:=If[Mod[n, m]==0, 1, 0]; Tri[n_]:=n(n-1)(n-2)(n^3+18n^2-43n+60)/720 - del[2, n](n-2)(n-7)n/8 - del[4, n](3n/4) - del[6, n](18n-106)n/3 + del[12, n]*33n + del[18, n]*36n + del[24, n]*24n - del[30, n]*96n - del[42, n]*72n - del[60, n]*264n - del[84, n]*96n - del[90, n]*48n - del[120, n]*96n - del[210, n]*48n; Table[Tri[n], {n, 3, 1000}] (* T. D. Noe, Dec 21 2006 *)
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy,nice
|
|
AUTHOR
|
|
|
EXTENSIONS
|
a(3)-a(8) computed by Victor Meally (personal communication to N. J. A. Sloane, circa 1975); later terms and recurrence from S. Sommars and T. Sommars.
|
|
STATUS
|
approved
|
|
|
|