login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Total number of triangles visible in regular n-gon with all diagonals drawn.
(Formerly M4513)
20

%I M4513 #50 Nov 26 2024 10:06:27

%S 1,8,35,110,287,632,1302,2400,4257,6956,11297,17234,25935,37424,53516,

%T 73404,101745,136200,181279,236258,306383,389264,495650,620048,772785,

%U 951384,1167453,1410350,1716191,2058848,2463384,2924000,3462305,4067028,4776219,5568786,6479551

%N Total number of triangles visible in regular n-gon with all diagonals drawn.

%C Place n equally-spaced points on a circle, join them in all possible ways; how many triangles can be seen?

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H T. D. Noe, <a href="/A006600/b006600.txt">Table of n, a(n) for n=3..1000</a>

%H Sascha Kurz, <a href="http://www.mathe2.uni-bayreuth.de/sascha/oeis/drawing/drawing.html">m-gons in regular n-gons</a>

%H Victor Meally, <a href="/A006556/a006556.pdf">Letter to N. J. A. Sloane</a>, no date.

%H B. Poonen and M. Rubinstein, <a href="http://epubs.siam.org:80/sam-bin/dbq/article/28124">Number of Intersection Points Made by the Diagonals of a Regular Polygon</a>, SIAM J. Discrete Mathematics, Vol. 11, pp. 135-156.

%H B. Poonen and M. Rubinstein, <a href="http://math.mit.edu/~poonen/papers/ngon.pdf">The number of intersection points made by the diagonals of a regular polygon</a>, SIAM J. on Discrete Mathematics, Vol. 11, No. 1, 135-156 (1998).

%H B. Poonen and M. Rubinstein, <a href="http://arXiv.org/abs/math.MG/9508209">The number of intersection points made by the diagonals of a regular polygon</a>, arXiv version, which has fewer typos than the SIAM version.

%H B. Poonen and M. Rubinstein, <a href="http://math.mit.edu/~poonen/papers/ngon.m">Mathematica programs for these sequences</a>

%H M. Rubinstein, <a href="/A006561/a006561_3.pdf">Drawings for n=4,5,6,...</a>

%H T. Sillke, <a href="http://www.mathematik.uni-bielefeld.de/~sillke/SEQUENCES/triangle_counting">Number of triangles for convex n-gon</a>

%H S. E. Sommars and T. Sommars, <a href="http://www.cs.uwaterloo.ca/journals/JIS/sommars/newtriangle.html">Number of Triangles Formed by Intersecting Diagonals of a Regular Polygon</a>, J. Integer Sequences, 1 (1998), #98.1.5.

%H <a href="/index/Pol#Poonen">Sequences formed by drawing all diagonals in regular polygon</a>

%F a(2n-1) = A005732(2n-1) for n > 1; a(2n) = A005732(2n) - A260417(n) for n > 1. - _Jonathan Sondow_, Jul 25 2015

%e a(4) = 8 because in a quadrilateral the diagonals cross to make four triangles, which pair up to make four more.

%t del[m_,n_]:=If[Mod[n,m]==0,1,0]; Tri[n_]:=n(n-1)(n-2)(n^3+18n^2-43n+60)/720 - del[2,n](n-2)(n-7)n/8 - del[4,n](3n/4) - del[6,n](18n-106)n/3 + del[12,n]*33n + del[18,n]*36n + del[24,n]*24n - del[30,n]*96n - del[42,n]*72n - del[60,n]*264n - del[84,n]*96n - del[90,n]*48n - del[120,n]*96n - del[210,n]*48n; Table[Tri[n], {n,3,1000}] (* _T. D. Noe_, Dec 21 2006 *)

%Y Often confused with A005732.

%Y Cf. A203016, A260417.

%Y Row sums of A363174.

%Y Sequences related to chords in a circle: A001006, A054726, A006533, A006561, A006600, A007569, A007678. See also entries for chord diagrams in Index file.

%K nonn,easy,nice

%O 3,2

%A _N. J. A. Sloane_

%E a(3)-a(8) computed by Victor Meally (personal communication to _N. J. A. Sloane_, circa 1975); later terms and recurrence from S. Sommars and T. Sommars.