login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A203016
Numbers congruent to {1, 2, 3, 4} mod 6, multiplied by 3.
3
3, 6, 9, 12, 21, 24, 27, 30, 39, 42, 45, 48, 57, 60, 63, 66, 75, 78, 81, 84, 93, 96, 99, 102, 111, 114, 117, 120, 129, 132, 135, 138, 147, 150, 153, 156, 165, 168, 171, 174, 183, 186, 189, 192, 201, 204, 207, 210, 219, 222, 225, 228, 237, 240, 243, 246, 255, 258, 261, 264, 273, 276, 279, 282, 291, 294, 297
OFFSET
1,1
COMMENTS
Appears to coincide with the list of numbers n such that A006600(n) is not a multiple of n. Equals A047227 multiplied by 3.
LINKS
Colin Foster, Peripheral mathematical knowledge, For the Learning of Mathematics, vol. 31, #3 (November, 2011), pp. 24-28.
FORMULA
From Wesley Ivan Hurt, Jun 07 2016: (Start)
G.f.: 3*x*(1+x+x^2+x^3+2*x^4)/((x-1)^2*(1+x+x^2+x^3)).
a(n) = 3*(6*n-5-i^(2*n)+(1+i)*i^(1-n)+(1-i)*i^(n-1))/4 where i=sqrt(-1).
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
a(2k) = 3*A047235(k), a(2k-1) = 3*A047241(k). (End)
E.g.f.: 3*(4 + sin(x) - cos(x) + (3*x - 2)*sinh(x) + 3*(x - 1)*cosh(x))/2. - Ilya Gutkovskiy, Jun 07 2016
MAPLE
A203016:=n->3*(6*n-5-I^(2*n)+(1+I)*I^(1-n)+(1-I)*I^(n-1))/4: seq(A203016(n), n=1..100); # Wesley Ivan Hurt, Jun 07 2016
MATHEMATICA
3 Select[Range[100], MemberQ[{1, 2, 3, 4}, Mod[#, 6]] &] (* Wesley Ivan Hurt, Jun 07 2016 *)
PROG
(Magma) [3*n : n in [0..100] | n mod 6 in [1..4]]; // Wesley Ivan Hurt, Jun 07 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Dec 27 2011
STATUS
approved