login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A047227
Numbers that are congruent to {1, 2, 3, 4} mod 6.
5
1, 2, 3, 4, 7, 8, 9, 10, 13, 14, 15, 16, 19, 20, 21, 22, 25, 26, 27, 28, 31, 32, 33, 34, 37, 38, 39, 40, 43, 44, 45, 46, 49, 50, 51, 52, 55, 56, 57, 58, 61, 62, 63, 64, 67, 68, 69, 70, 73, 74, 75, 76, 79, 80, 81, 82, 85, 86, 87, 88, 91, 92, 93, 94, 97, 98
OFFSET
1,2
COMMENTS
a(k)^m is a term for k and m in N. - Jerzy R Borysowicz, Apr 18 2023
FORMULA
From Johannes W. Meijer, Jul 07 2011: (Start)
a(n) = floor((n+2)/4) + floor((n+1)/4) + floor(n/4) + 2*floor((n-1)/4) + floor((n+3)/4).
G.f.: x*(1 + x + x^2 + x^3 + 2*x^4)/(x^5 - x^4 - x + 1). (End)
From Wesley Ivan Hurt, May 20 2016: (Start)
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
a(n) = (6n - 5 - i^(2n) + (1+i)*i^(1-n) + (1-i)*i^(n-1))/4 where i=sqrt(-1).
a(2n) = A047235(n), a(2n-1) = A047241(n). (End)
E.g.f.: (4 + sin(x) - cos(x) + (3*x - 2)*sinh(x) + 3*(x - 1)*cosh(x))/2. - Ilya Gutkovskiy, May 21 2016
From Wesley Ivan Hurt, May 21 2016: (Start)
a(n) = A047246(n) + 1.
a(n+2) - a(n+1) = A093148(n) for n>0.
a(1-n) = - A047247(n). (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = sqrt(3)*Pi/12 + 2*log(2)/3 - log(3)/4. - Amiram Eldar, Dec 17 2021
MAPLE
A047227:=n->(6*n-5-I^(2*n)+(1+I)*I^(1-n)+(1-I)*I^(n-1))/4: seq(A047227(n), n=1..100); # Wesley Ivan Hurt, May 20 2016
MATHEMATICA
Complement[Range[100], Flatten[Table[{6n - 1, 6n}, {n, 0, 15}]]] (* Alonso del Arte, Jul 07 2011 *)
Select[Range[100], MemberQ[{1, 2, 3, 4}, Mod[#, 6]]&] (* Vincenzo Librandi, Jan 06 2013 *)
PROG
(Magma) [n: n in [0..100] | n mod 6 in [1..4]]; // Vincenzo Librandi, Jan 06 2013
(PARI) a(n)=([0, 1, 0, 0, 0; 0, 0, 1, 0, 0; 0, 0, 0, 1, 0; 0, 0, 0, 0, 1; -1, 1, 0, 0, 1]^(n-1)*[1; 2; 3; 4; 7])[1, 1] \\ Charles R Greathouse IV, May 03 2023
CROSSREFS
Complement of A047264. Equals A203016 divided by 3.
Sequence in context: A104576 A332485 A031477 * A317047 A228102 A261412
KEYWORD
nonn,easy
STATUS
approved