login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A047229 Numbers that are congruent to {0, 2, 3, 4} mod 6. 15
0, 2, 3, 4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 26, 27, 28, 30, 32, 33, 34, 36, 38, 39, 40, 42, 44, 45, 46, 48, 50, 51, 52, 54, 56, 57, 58, 60, 62, 63, 64, 66, 68, 69, 70, 72, 74, 75, 76, 78, 80, 81, 82, 84 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
Appears to be the sequence of n such that n never divides 3^x-2^x for x>=0. - Benoit Cloitre, Aug 19 2002
Numbers divisible by 2 or 3. - Nick Hobson (nickh(AT)qbyte.org), Mar 13 2007
Numbers k such that average of squares of the first k positive integers is not integer. A089128(a(n)) > 1. For n >= 2, a(n) = complement of A007310. - Jaroslav Krizek, May 28 2010
Numbers k such that k*Fibonacci(k) is even. - Gary Detlefs, Oct 27 2011
Also numbers that have a divisor d with 2^1 <= d < 2^2 (see Ei definition p. 340 in Besicovitch article). - Michel Marcus, Oct 31 2013
Starting with 0, 2, a(n) is the smallest number greater than a(n-1) that is not relatively prime to a(n-2). - Franklin T. Adams-Watters, Dec 04 2014
LINKS
A. S. Besicovitch, On the density of certain sequences of integers, Mathematische Annalen, Vol. 110, No. 1 (1935), pp. 336-341; alternative link.
Hsien-Kuei Hwang, Svante Janson and Tsung-Hsi Tsai, Exact and Asymptotic Solutions of a Divide-and-Conquer Recurrence Dividing at Half: Theory and Applications, ACM Transactions on Algorithms, Vol. 13, No. 4 (2017), Article #47; ResearchGate link; preprint, 2016.
FORMULA
a(n) = (1/8)*(11*((n-1) mod 4) + (n mod 4) + ((n+1) mod 4) - ((n+2) mod 4)) + 6*A002265(n-1). - Paolo P. Lava, Nov 05 2007
a(n) = (6*(n-1) - (1+(-1)^n)*(-1)^(n*(1+(-1)^n)/4))/4; also a(n) = (6*(n-1) - (-i)^n - i^n)/4, where i is the imaginary unit. - Bruno Berselli, Nov 08 2010
G.f.: x^2*(2-x+2*x^2) / ( (x^2+1)*(x-1)^2 ). - R. J. Mathar, Oct 08 2011
a(n) = floor((6*n-5)/4) + floor((1/2)*cos((n+2)*Pi/2) + 1/2). - Gary Detlefs, Oct 28 2011 and corrected by Aleksey A. Solomein, Feb 08 2016
a(n) = a(n-1) + a(n-4) - a(n-5), n>4. - Gionata Neri, Apr 15 2015
a(n) = -a(2-n) for all n in Z. - Michael Somos, Oct 05 2015
a(n) = n + 2*floor((n-2)/4) + floor(f(n+2)/3), where f(n) = n mod 4. - Aleksey A. Solomein, Feb 08 2016
a(n) = (3*n - 3 - cos(n*Pi/2))/2. - Wesley Ivan Hurt, Oct 02 2017
Equals {0} union {A003586(j) * A007310(k) for j>1 and k>0}. - Flávio V. Fernandes, Jul 21 2021
Sum_{n>=2} (-1)^n/a(n) = log(3)/2 - log(2)/3. - Amiram Eldar, Dec 12 2021
MATHEMATICA
Select[Range[0, 100], MemberQ[{0, 2, 3, 4}, Mod[#, 6]]&] (* Harvey P. Dale, Aug 15 2011 *)
a[ n_] := With[ {m = n - 1}, {2, 3, 4, 0}[[Mod[m, 4, 1]]] + Quotient[ m, 4] 6]; (* Michael Somos, Oct 05 2015 *)
PROG
(Magma) [ n : n in [0..150] | n mod 6 in [0, 2, 3, 4]] ; // Vincenzo Librandi, Jun 01 2011
(PARI) a(n)=(n-1)\4*6+[4, 0, 2, 3][n%4+1] \\ Charles R Greathouse IV, Oct 28 2011
(Haskell)
a047229 n = a047229_list !! (n-1)
a047229_list = filter ((`notElem` [1, 5]) . (`mod` 6)) [0..]
-- Reinhard Zumkeller, Jun 30 2012
CROSSREFS
Cf. A007310 (complement).
Union of A005843 and A008585.
Sequence in context: A171581 A063450 A353684 * A094229 A067290 A106577
KEYWORD
nonn,easy
AUTHOR
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 8 15:17 EST 2023. Contains 367680 sequences. (Running on oeis4.)