|
|
A047229
|
|
Numbers that are congruent to {0, 2, 3, 4} mod 6.
|
|
15
|
|
|
0, 2, 3, 4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 26, 27, 28, 30, 32, 33, 34, 36, 38, 39, 40, 42, 44, 45, 46, 48, 50, 51, 52, 54, 56, 57, 58, 60, 62, 63, 64, 66, 68, 69, 70, 72, 74, 75, 76, 78, 80, 81, 82, 84
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
Appears to be the sequence of n such that n never divides 3^x-2^x for x>=0. - Benoit Cloitre, Aug 19 2002
Numbers divisible by 2 or 3. - Nick Hobson (nickh(AT)qbyte.org), Mar 13 2007
Numbers k such that average of squares of the first k positive integers is not integer. A089128(a(n)) > 1. For n >= 2, a(n) = complement of A007310. - Jaroslav Krizek, May 28 2010
Numbers k such that k*Fibonacci(k) is even. - Gary Detlefs, Oct 27 2011
Also numbers that have a divisor d with 2^1 <= d < 2^2 (see Ei definition p. 340 in Besicovitch article). - Michel Marcus, Oct 31 2013
Starting with 0, 2, a(n) is the smallest number greater than a(n-1) that is not relatively prime to a(n-2). - Franklin T. Adams-Watters, Dec 04 2014
|
|
LINKS
|
|
|
FORMULA
|
a(n) = (1/8)*(11*((n-1) mod 4) + (n mod 4) + ((n+1) mod 4) - ((n+2) mod 4)) + 6*A002265(n-1). - Paolo P. Lava, Nov 05 2007
a(n) = (6*(n-1) - (1+(-1)^n)*(-1)^(n*(1+(-1)^n)/4))/4; also a(n) = (6*(n-1) - (-i)^n - i^n)/4, where i is the imaginary unit. - Bruno Berselli, Nov 08 2010
G.f.: x^2*(2-x+2*x^2) / ( (x^2+1)*(x-1)^2 ). - R. J. Mathar, Oct 08 2011
a(n) = a(n-1) + a(n-4) - a(n-5), n>4. - Gionata Neri, Apr 15 2015
a(n) = n + 2*floor((n-2)/4) + floor(f(n+2)/3), where f(n) = n mod 4. - Aleksey A. Solomein, Feb 08 2016
Sum_{n>=2} (-1)^n/a(n) = log(3)/2 - log(2)/3. - Amiram Eldar, Dec 12 2021
|
|
MATHEMATICA
|
Select[Range[0, 100], MemberQ[{0, 2, 3, 4}, Mod[#, 6]]&] (* Harvey P. Dale, Aug 15 2011 *)
a[ n_] := With[ {m = n - 1}, {2, 3, 4, 0}[[Mod[m, 4, 1]]] + Quotient[ m, 4] 6]; (* Michael Somos, Oct 05 2015 *)
|
|
PROG
|
(Magma) [ n : n in [0..150] | n mod 6 in [0, 2, 3, 4]] ; // Vincenzo Librandi, Jun 01 2011
(Haskell)
a047229 n = a047229_list !! (n-1)
a047229_list = filter ((`notElem` [1, 5]) . (`mod` 6)) [0..]
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|