|
|
A047228
|
|
Numbers that are congruent to {2, 3, 4} mod 6.
|
|
7
|
|
|
2, 3, 4, 8, 9, 10, 14, 15, 16, 20, 21, 22, 26, 27, 28, 32, 33, 34, 38, 39, 40, 44, 45, 46, 50, 51, 52, 56, 57, 58, 62, 63, 64, 68, 69, 70, 74, 75, 76, 80, 81, 82, 86, 87, 88, 92, 93, 94, 98, 99, 100, 104, 105, 106, 110, 111, 112, 116, 117, 118, 122, 123, 124
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
Vincenzo Librandi, Table of n, a(n) for n = 1..1000
Index entries for linear recurrences with constant coefficients, signature (1,0,1,-1).
|
|
FORMULA
|
From Paul Barry, Sep 01 2009: (Start)
G.f.: (2+x+x^2+2*x^3)/(1-x-x^3+x^4).
a(n) = 2*n-1-cos(2*n*Pi/3)+sin(2*n*Pi/3)/sqrt(3). (End)
From Wesley Ivan Hurt, Jun 13 2016: (Start)
a(n) = a(n-1) + a(n-3) - a(n-4) for n>4.
a(3k) = 6k-2, a(3k-1) = 6k-3, a(3k-2) = 6k-4. (End)
|
|
MAPLE
|
A047228:=n->2*n-1-cos(2*n*Pi/3)+sin(2*n*Pi/3)/sqrt(3): seq(A047228(n), n=1..100); # Wesley Ivan Hurt, Jun 13 2016
|
|
MATHEMATICA
|
Select[Range[0, 150], MemberQ[{2, 3, 4}, Mod[#, 6]]&] (* Vincenzo Librandi, Jan 06 2013 *)
|
|
PROG
|
(MAGMA) [n: n in [0..120] | n mod 6 in [2..4]]; // Vincenzo Librandi, Jan 05 2013
(Haskell)
a047228 n = a047228_list !! (n-1)
a047228_list = 2 : 3 : 4 : map (+ 6) a047228_list
-- Reinhard Zumkeller, Feb 19 2013
|
|
CROSSREFS
|
Cf. A007310, A047241, A047261, A047273, A097451.
Sequence in context: A230998 A184810 A246293 * A032968 A079279 A246444
Adjacent sequences: A047225 A047226 A047227 * A047229 A047230 A047231
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
N. J. A. Sloane
|
|
EXTENSIONS
|
Paul Barry formula adapted for offset 1 by Wesley Ivan Hurt, Jun 13 2016
|
|
STATUS
|
approved
|
|
|
|