OFFSET
1,1
COMMENTS
If B and C are terms in the sequence then 2*B*C is a term. B (resp. C) is a term iff B (resp. C) mod 6 = 2, 4 or 5. It follows that (2*B*C) mod 6 = (2*(B mod 6)*(C mod 6)) mod 6 = 2 or 4 and therefore 2*B*C is a term. Examples: for B=16 and C=29, 2*16*29 = 928 is a term: (2*B*C) mod 6 = (2*16*29) mod 6 = 4; (2*2*2) mod 6 = 2. - Jerzy R Borysowicz, May 24 2018
LINKS
Reinhard Zumkeller, Table of n, a(n) for n = 1..1000
Index entries for linear recurrences with constant coefficients, signature (1,0,1,-1).
FORMULA
G.f.: x*(1+x)*(x^2+2) / ((1+x+x^2)*(x-1)^2). - R. J. Mathar, Oct 08 2011
A214090(a(n)) = 1. - Reinhard Zumkeller, Jul 06 2012
From Wesley Ivan Hurt, Jun 14 2016: (Start)
a(n) = a(n-1) + a(n-3) - a(n-4) for n>4.
a(n) = (6*n - 1 - 2*cos(2*n*Pi/3))/3.
a(3k) = 6k-1, a(3k-1) = 6k-2, a(3k-2) = 6k-4. (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/6 - log(2+sqrt(3))/(2*sqrt(3)) + log(2)/3. - Amiram Eldar, Dec 16 2021
E.g.f.: (3 + exp(x)*(6*x - 1) - 2*exp(-x/2)*cos(sqrt(3)*x/2))/3. - Stefano Spezia, Jul 26 2024
MAPLE
MATHEMATICA
CoefficientList[Series[(1 + x)*(x^2 + 2)/((1 + x + x^2)*(x - 1)^2), {x, 0, 50}], x] (* Wesley Ivan Hurt, Aug 16 2014 *)
Select[ Range@ 125, MemberQ[{2, 4, 5}, Mod[#, 6]] &] (* or *)
LinearRecurrence[{1, 0, 1, -1}, {2, 4, 5, 8}, 62] (* Robert G. Wilson v, Jun 13 2018 *)
PROG
(Haskell)
a047261 n = a047261_list !! n
a047261_list = 2 : 4 : 5 : map (+ 6) a047261_list
-- Reinhard Zumkeller, Feb 19 2013, Jul 06 2012
(Magma) [n : n in [0..150] | n mod 6 in [2, 4, 5]]; // Wesley Ivan Hurt, Jun 14 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
More terms from Wesley Ivan Hurt, Aug 16 2014
STATUS
approved