login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A047261
Numbers that are congruent to {2, 4, 5} mod 6.
9
2, 4, 5, 8, 10, 11, 14, 16, 17, 20, 22, 23, 26, 28, 29, 32, 34, 35, 38, 40, 41, 44, 46, 47, 50, 52, 53, 56, 58, 59, 62, 64, 65, 68, 70, 71, 74, 76, 77, 80, 82, 83, 86, 88, 89, 92, 94, 95, 98, 100, 101, 104, 106, 107, 110, 112, 113, 116, 118, 119, 122, 124
OFFSET
1,1
COMMENTS
If B and C are terms in the sequence then 2*B*C is a term. B (resp. C) is a term iff B (resp. C) mod 6 = 2, 4 or 5. It follows that (2*B*C) mod 6 = (2*(B mod 6)*(C mod 6)) mod 6 = 2 or 4 and therefore 2*B*C is a term. Examples: for B=16 and C=29, 2*16*29 = 928 is a term: (2*B*C) mod 6 = (2*16*29) mod 6 = 4; (2*2*2) mod 6 = 2. - Jerzy R Borysowicz, May 24 2018
FORMULA
G.f.: x*(1+x)*(x^2+2) / ((1+x+x^2)*(x-1)^2). - R. J. Mathar, Oct 08 2011
A214090(a(n)) = 1. - Reinhard Zumkeller, Jul 06 2012
From Wesley Ivan Hurt, Jun 14 2016: (Start)
a(n) = a(n-1) + a(n-3) - a(n-4) for n>4.
a(n) = (6*n - 1 - 2*cos(2*n*Pi/3))/3.
a(3k) = 6k-1, a(3k-1) = 6k-2, a(3k-2) = 6k-4. (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/6 - log(2+sqrt(3))/(2*sqrt(3)) + log(2)/3. - Amiram Eldar, Dec 16 2021
E.g.f.: (3 + exp(x)*(6*x - 1) - 2*exp(-x/2)*cos(sqrt(3)*x/2))/3. - Stefano Spezia, Jul 26 2024
MAPLE
A047261:=n->(6*n-1-2*cos(2*n*Pi/3))/3: seq(A047261(n), n=1..100); # Wesley Ivan Hurt, Jun 14 2016
MATHEMATICA
CoefficientList[Series[(1 + x)*(x^2 + 2)/((1 + x + x^2)*(x - 1)^2), {x, 0, 50}], x] (* Wesley Ivan Hurt, Aug 16 2014 *)
Select[ Range@ 125, MemberQ[{2, 4, 5}, Mod[#, 6]] &] (* or *)
LinearRecurrence[{1, 0, 1, -1}, {2, 4, 5, 8}, 62] (* Robert G. Wilson v, Jun 13 2018 *)
PROG
(Haskell)
a047261 n = a047261_list !! n
a047261_list = 2 : 4 : 5 : map (+ 6) a047261_list
-- Reinhard Zumkeller, Feb 19 2013, Jul 06 2012
(Magma) [n : n in [0..150] | n mod 6 in [2, 4, 5]]; // Wesley Ivan Hurt, Jun 14 2016
CROSSREFS
Cf. A047242 (complement).
Sequence in context: A191987 A138007 A284880 * A286687 A190807 A289058
KEYWORD
nonn,easy
EXTENSIONS
More terms from Wesley Ivan Hurt, Aug 16 2014
STATUS
approved