login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A214090
Period 6: repeat [0, 0, 1, 0, 1, 1].
6
0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0
OFFSET
0
COMMENTS
Parity of A009947.
This is the lexicographically earliest extensible binary sequence containing no palindromes of length 5 or more. It is impossible to avoid palindromes of length 4 in a binary sequence. Two zeros could be added at the beginning and still have no longer palindrome, but then it would be impossible to extend the sequence further back without creating a longer palindrome. - Franklin T. Adams-Watters, Nov 24 2013
FORMULA
a(n) = A000035(A009947(n)).
a(3*n) = 0; a(3*n+1) = n mod 2; a(3*n+2) = 1.
a(A047242(n)) = 0; a(A047261(n)) = 1.
a(n) = a(n-3) + ((n mod 3) mod 2) * (1 - 2*a(n-3)) for n > 2.
a(n) = mod(n-1, 1 + mod(n, 3)). - Wesley Ivan Hurt, Aug 16 2014
G.f.: x^2*(1+x^2+x^3) / ((1-x)*(1+x)*(1-x+x^2)*(1+x+x^2)) = (x^2 + x^4 + x^5)/(1 - x^6). - Vaclav Kotesovec, Aug 18 2014
From Wesley Ivan Hurt, Jun 17 2016: (Start)
a(n) = a(n-6) for n > 5.
a(n) = -cos(n*Pi/6)*sin(n*Pi/6)*(sqrt(3)+2*sin(2*n*Pi/3)+4*sqrt(3)*sin((1-2*n)*Pi/6))/3. (End)
a(n) = floor(n/2) - floor(n/3) - floor(n/6). - Ridouane Oudra, Apr 09 2023
E.g.f.: (2*cosh(x) - sqrt(3)*cosh(x/2)*sin(sqrt(3)*x/2) + cos(sqrt(3)*x/2)*(sinh(x/2) - 2*cosh(x/2)) + sinh(x))/3. - Stefano Spezia, Jul 26 2024
MAPLE
A214090:=n->(n-1) mod (1+(n mod 3)): seq(A214090(n), n=0..100); # Wesley Ivan Hurt, Aug 16 2014
MATHEMATICA
Table[Mod[n - 1, 1 + Mod[n, 3]], {n, 0, 100}] (* Wesley Ivan Hurt, Aug 16 2014 *)
PadRight[{}, 120, {0, 0, 1, 0, 1, 1}] (* or *) LinearRecurrence[{0, 0, 0, 0, 0, 1}, {0, 0, 1, 0, 1, 1}, 120] (* Harvey P. Dale, Nov 29 2014 *)
PROG
(Haskell)
a214090 = (`mod` 2) . a009947
(Magma) &cat[[0, 0, 1, 0, 1, 1]: n in [0..20]]; // Wesley Ivan Hurt, Jun 17 2016
(PARI) a(n)=[0, 0, 1, 0, 1, 1][n%6+1] \\ Charles R Greathouse IV, Jul 17 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Reinhard Zumkeller, Jul 06 2012
EXTENSIONS
Title changed by Franklin T. Adams-Watters, Nov 24 2013
STATUS
approved