OFFSET
1,1
COMMENTS
(a(n)^2 - 1) / A002110(n) is congruent to 0 (mod 4). (a(n)^2 - 1) / (4*A002110(n)) = A215085(n). [J. Stauduhar, Aug 03 2012]
a(n) == +1 or -1 (mod prime(i)) for every i=1,2,...,n. The system of congruences x == +1 or -1 (mod prime(i)), i=1,2,...,n, has 2^(n-1) solutions modulo A002110(n) so that a(n) represents the smallest prime in the corresponding residue classes, allowing efficient computation (see PARI program). - Max Alekseyev, Aug 22 2012
LINKS
Max Alekseyev, Table of n, a(n) for n = 1..32
EXAMPLE
a(5) = 419: 419^2-1 = 175560 = 2^3*3*5*7*11*19 contains the first 5 primes.
a(7) = 1429: 1428=2^2*3*7*17, 1430=2*5*11*13 contains the first 7 primes.
a(8) = 315589: 315589^2-1 = 2^3*3*5*7*11*13*17^2*19*151 contains the first 8 primes.
MAPLE
A214089 := proc(n)
local m, k, p;
m:= 2*mul(ithprime(j), j=1..n);
for k from 1 do
p:= sqrt(m*k+1);
if type(p, integer) and isprime(p) then return(p)
end if
end do
end proc;
# Robert Israel, Aug 19 2012
MATHEMATICA
f[n_] := Block[{k = 1, p = Times @@ Prime@Range@n}, While[! IntegerQ@Sqrt[4 k*p + 1], k++]; Block[{j = k}, While[! PrimeQ[Sqrt[4 j*p + 1]], j++]; Sqrt[4 j*p + 1]]]; Array[f, 10] (* J. Stauduhar, Aug 18 2012 *)
PROG
(PARI) A214089(n) = {
local(a, k=4, p) ;
a=prod(j=1, n, prime(j)) ;
while(1,
if( issquare(k*a+1, &p),
if(isprime(p),
return(p);
) ;
) ;
k+=4;
) ;
} ;
(PARI) { a(n) = local(B, q); B=prod(i=1, n, prime(i))^2; forvec(v=vector(n-1, i, [0, 1]), q=chinese(concat(vector(n-1, i, Mod((-1)^v[i], prime(i+1))), [Mod(1, 2)])); forstep(s=lift(q), B-1, q.mod, if(ispseudoprime(s), B=s; break)) ); B } /* Max Alekseyev, Aug 22 2012 */
(Python)
from itertools import product
from sympy import sieve, prime, isprime
from sympy.ntheory.modular import crt
def A214089(n): return 3 if n == 1 else int(min(filter(isprime, (crt(tuple(sieve.primerange(prime(n)+1)), t)[0] for t in product((1, -1), repeat=n))))) # Chai Wah Wu, May 31 2022
CROSSREFS
KEYWORD
nonn,hard
AUTHOR
Robin Garcia, Jul 02 2012
EXTENSIONS
a(15)-a(16) from Donovan Johnson, Jul 25 2012
a(17) from Charles R Greathouse IV, Aug 08 2012
a(18) from Charles R Greathouse IV, Aug 16 2012
a(19) from J. Stauduhar, Aug 18 2012
a(20)-a(32) from Max Alekseyev, Aug 22 2012
STATUS
approved