This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A010882 Period 3: repeat [1, 2, 3]. 19
 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Partial sums are given by A130481(n)+n+1. - Hieronymus Fischer, Jun 08 2007 41/333 = 0.123123123... - Eric Desbiaux, Nov 03 2008 Terms of the simple continued fraction for 3/(sqrt(37)-4). - Paolo P. Lava, Feb 16 2009 This is the lexicographically earliest sequence with no substring of more than 1 term being a palindrome. - Franklin T. Adams-Watters, Nov 24 2013 LINKS Index entries for linear recurrences with constant coefficients, signature (0,0,1). FORMULA G.f.: (1+2x+3x^2)/(1-x^3). - Paul Barry, May 25 2003 a(n) = 1 + (n mod 3). - Paolo P. Lava, Nov 21 2006 a(n) = A010872(n) + 1. - Hieronymus Fischer, Jun 08 2007 a(n) = 6 - a(n-1) - a(n-2) for n > 1. - Reinhard Zumkeller, Apr 13 2008 a(n) = n+1-3*floor(n/3) = floor(41*10^(n+1)/333)-floor(41*10^n/333)*10; a(n)-a(n-3)=0 with n>2. - Bruno Berselli, Jun 28 2010 a(n) = A180593(n+1)/3. - Reinhard Zumkeller, Oct 25 2010 a(n) = floor((4*n+3)/3) mod 4. - Gary Detlefs, May 15 2011 a(n) = -cos(2/3*Pi*n)-1/3*3^(1/2)*sin(2/3*Pi*n)+2. - Leonid Bedratyuk, May 13 2012 E.g.f.: 2*(3*exp(3*x/2) - sqrt(3)*cos(Pi/6-sqrt(3)*x/2))*exp(-x/2)/3. - Ilya Gutkovskiy, Jul 05 2016 MAPLE seq(op([1, 2, 3]), n=0..50); # Wesley Ivan Hurt, Jul 05 2016 MATHEMATICA Nest[ Flatten[ # /. {1 -> {1, 2}, 2 -> {3, 1}, 3 -> {2, 3}}] &, {1}, 7] (* Robert G. Wilson v, Mar 08 2005 *) PadRight[{}, 120, {1, 2, 3}] (* Harvey P. Dale, Apr 09 2018 *) PROG (Haskell) a010882 = (+ 1) . (`mod` 3) a010882_list = cycle [1, 2, 3] -- Reinhard Zumkeller, Mar 20 2013 (PARI) a(n) = 1 + n%3; \\ Michel Marcus, Feb 04 2016 (MAGMA) &cat[[1..3]^^30]; // Vincenzo Librandi, Feb 04 2016 CROSSREFS Cf. A010872, A010873, A010874, A010875, A010876, A004526, A002264, A002265, A002266, A177036 (decimal expansion of (4+sqrt(37))/7), A214090. Cf. A130481, A180593. Sequence in context: A082846 A117373 A132677 * A293207 A106590 A194074 Adjacent sequences:  A010879 A010880 A010881 * A010883 A010884 A010885 KEYWORD nonn,easy AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 23 17:32 EDT 2019. Contains 328373 sequences. (Running on oeis4.)