The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A010876 a(n) = n mod 7. 34
 0, 1, 2, 3, 4, 5, 6, 0, 1, 2, 3, 4, 5, 6, 0, 1, 2, 3, 4, 5, 6, 0, 1, 2, 3, 4, 5, 6, 0, 1, 2, 3, 4, 5, 6, 0, 1, 2, 3, 4, 5, 6, 0, 1, 2, 3, 4, 5, 6, 0, 1, 2, 3, 4, 5, 6, 0, 1, 2, 3, 4, 5, 6, 0, 1, 2, 3, 4, 5, 6, 0, 1, 2, 3, 4, 5, 6, 0, 1, 2, 3, 4, 5, 6, 0, 1, 2, 3 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,1). FORMULA Complex representation: a(n) = (1/7)*(1-r^n) * Sum_{1<=k<7} k * Product_{1<=m<7, m<>k} (1-r^(n-m)) where r=exp(2*pi/7*i) and i=sqrt(-1). Trigonometric representation: a(n) = (64/7)^2*(sin(n*pi/7))^2*Sum_{1<=k<7} k*Product_{1<=m<7,m<>k} sin((n-m)*pi/7)^2. G.f.: ( Sum_{1<=k<7} k*x^k ) / (1 - x^7). G.f.: x*(6*x^7-7*x^6+1)/((1-x^7)*(1-x)^2). - Hieronymus Fischer, May 31 2007 a(n) = floor(41152/3333333*10^(n+1)) mod 10. - Hieronymus Fischer, Jan 03 2013 a(n) = floor(7625/274514*7^(n+1)) mod 7. - Hieronymus Fischer, Jan 04 2013 PROG (Sage) [power_mod(n, 7, 7) for n in range(0, 81)] # Zerinvary Lajos, Nov 07 2009 (PARI) a(n)=n%7 \\ Charles R Greathouse IV, Dec 05 2011 (MAGMA) &cat [[0..6]^^20]; // Bruno Berselli, Jun 09 2016 CROSSREFS Partial sums: A130485. Other related sequences: A130481, A130482, A130483, A130484. Sequence in context: A037849 A037885 A031007 * A309958 A055400 A257847 Adjacent sequences:  A010873 A010874 A010875 * A010877 A010878 A010879 KEYWORD nonn,easy AUTHOR EXTENSIONS Formula section re-edited for better readability by Hieronymus Fischer, Dec 05 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 24 17:09 EDT 2020. Contains 337321 sequences. (Running on oeis4.)